Skip to main content

Review of Remediation Approaches Implemented in Radioactively Contaminated Areas

  • Chapter
  • First Online:

Abstract

The chapter aims to summarize different remediation approaches of radionuclide pollutants in water and soil media carried out after decommissioning of nuclear installations worldwide. The attention was focused on different methods of remediation, e.g. natural attenuation, bioremediation, excavating and removing contaminated soil and in situ treatments. The results of radiological assessments of the influence of nuclear cycle facilities in the environment using different modelling approach of the radionuclides transport through the environmental medium are adopted as a useful tool in decision making process applied in remediation of contaminated areas. The current trend in development strategy to support the environmental decision systems for optimization of remediation actions is to use databases on environmental and managerial parameters and radioecological models for the prediction of the effectiveness of remediation measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.facilia.se/products/ecolego.asp

References

  • Ahammad JS, Sumithra S, Yamuna RT (2015) Screening for strontium accumulator plants in the vicinity of Tummalapalle uranium mining site Kadapa District, A.P. India. Int J Environ Sci 6:37–45

    CAS  Google Scholar 

  • Ahmed B, Cao B, McLean JS, Ica T, Dohnalkova A, Istanbullu O, Paksoy A, Fredrickson JK, Beyenal H (2012) Fe(III) Reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments. Appl Environ Microbiol 78:8001–8009

    Article  CAS  Google Scholar 

  • Amaral EC, Vianna ME, Godoy JM, Rochedo ER, Campos MJ, do Rio MA, Oliveira JP, Pereira JC, Reis WG (1991) Distribution of 137Cs in soils due to the Goiânia accident and decisions for remedial action during the recovery phase. Health Phys 60:91–98

    Article  CAS  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  Google Scholar 

  • ANL (2001) User’s manual for RESRAD version 6. Environmental Assessment Division, Argonne National Laboratory, Argonne, https://web.evs.anl.gov/resrad/RESRAD_Family/

  • Appelgren A, Bergström U, Brittain J, Gallego Diaz E, Håkanson L, Heling R, Monte L (1996) An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project “MOIRA”, ENEA, RT/AMB/96/17, Roma

    Google Scholar 

  • Balonov MI (2007) The Chernobyl Forum: major findings and recommendations. J Environ Radioact 96:6–12

    Article  CAS  Google Scholar 

  • Bargar JR, Williams KH, Campbell KM, Long PE, Stubbs JE, Suvorova EI, Lezama-Pacheco JS, Alessi DS, Stylo M, Webb SM, Davis JA, Giammar DE, Blue LY, Bernier-Latmani R (2013) Uranium redox transition pathways in acetate-amended sediments. Proc Natl Acad Sci U S A 110:4506–4511

    Article  Google Scholar 

  • Begg JDC, Burke IT, Lloyd JR, Boothman C, Shaw S, Charnock JM, Morris K (2011) Bioreduction behavior of U(VI) sorbed to sediments. Geomicrobiol J 28:160–171

    Article  CAS  Google Scholar 

  • Booher WF, Lindgren ER, Brady PV (1997) Electrokinetic removal of uranium from contaminated, unsaturated soils. Prepared by Sandia National Laboratories for U.S. DOE. Sandia Report SAND97–0122

    Google Scholar 

  • Bopp CJ, Lundstrom CC, Johnson TM, Sanford RA, Long PE, Williams KH (2010) Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, USA. Environ Sci Technol 44:5927–5933

    Article  CAS  Google Scholar 

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99:1371–1383

    Article  CAS  Google Scholar 

  • Bureau of Environmental Radiation, NJ (2003) Radioactive Soil Remediation Standards (RaSoRS). http://www.nj.gov/dep/rpp/rms/rad_cleanups.htm

  • Burke IT, Boothman C, Lloyd JR, Mortimer RJM, Livens FR, Morris K (2005) Effects of progressive anoxia on the solubility of technetium in sediments. Environ Sci Technol 39:4109–4116

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013a) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93:626–636

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S, Akretche DE, Belhadj B (2013b) Advances in electrokinetic remediation for the removal of organic contaminants in soils. In: Rashed MN (ed) Organic pollutants – monitoring, risk and treatment. Intech Open Publisher, pp 209–229

    Google Scholar 

  • Campbell BE, Koegler SS (1990) In situ vitrification of a mixed radioactive and hazardous waste site. Presented at the American Institure of Chemical Engineer 1990. Annual Meeting November 11–16, Chicago, Illinois

    Google Scholar 

  • Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Aue M, Coates JD (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707

    Article  Google Scholar 

  • Charro E, Pardo R, Peña V (2013) Chemometric interpretation of vertical profiles of radionuclides in soil near a Spanish coal-fired power plant. Chemosphere 90:488–496

    Article  CAS  Google Scholar 

  • Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236

    Article  CAS  Google Scholar 

  • Cho K, Zholi A, Frabutt D, Flood M, Floyd D, Tiquia SM (2012) Linking bacterial diversity and geochemistry of uranium-contaminated groundwater. Environ Technol 33:1629–1640

    Article  CAS  Google Scholar 

  • CIEMAT (2011) Screening model for environmental assessment (CROM). ftp://ftp.ciemat.es/pub/CROM/CROM_8/

  • Cox GM, Crout NMJ (2003) A methodology for the selection and optimisation of countermeasure strategies, report for the STRATEGY project (CEC Contract No: FIKR-CT 2000-00018), University of Nottingham, UK

    Google Scholar 

  • Cox G, Beresford NA, Alvarez-Farizo B, Oughton D, Kis Z, Eged K, Thørring H, Hunt J, Wright S, Barnett CL, Gil JM, Howard BJ, Crout NMJ (2005) Identifying optimal agricultural countermeasure strategies for a hypothetical contamination scenario using the strategy model. J Environ Radioact 83:383–397

    Article  CAS  Google Scholar 

  • Cresswell AJ, Kato H, Onda Y, Nanba K (2016) Evaluation of forest decontamination using radiometric measurements. J Environ Radioact 164:133–144

    Article  CAS  Google Scholar 

  • Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B, Miljanić Š (2015) Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ Sci Pollut Res 22:10317–10330

    Article  CAS  Google Scholar 

  • Dai L, Wei H, Wang L (2007) Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environ Res 104:201–208

    Article  CAS  Google Scholar 

  • Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modelling of uranium (VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641

    Article  CAS  Google Scholar 

  • DNA (1981) The radiological cleanup of Enewetak Atoll. Defense Nuclear Agency, Washington, DC

    Google Scholar 

  • Dobbin PS, Carter JP, San Juan CGS, von Hobe M, Powell AK, Richardson DJ (1999) Dissimilatory Fe(III) reduction by Clostridium beijenrickii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol Lett 176:131–138

    Article  CAS  Google Scholar 

  • DOE (2016) Salt Lake City, Utah, processing and disposal sites –fact sheet, U.S. Department of Energy Office of Legacy Management

    Google Scholar 

  • Dragović S, Petrović J, Dragović R, Ðorđević M, Đokić M, Gajić B (2015) The influence of edaphic factors on spatial and vertical distribution of radionuclides in soil. In: Walther C, Gupta DK (eds) Radionuclides in the environment: influence of chemical speciation and plant uptake on radionuclide migration. Springer, Cham, pp 61–80

    Chapter  Google Scholar 

  • Dragun J (1991) Geochemistry and soil chemistry reactions occurring during in situ vitrification. J Hazard Mater 26:343–364

    Article  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    Article  CAS  Google Scholar 

  • Environment Agency (2002) Guidance on the characterisation and remediation of radioactively contaminated land

    Google Scholar 

  • EPA (1995) In situ remediation technology: electrokinetics. EPA542-K-94-007. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, D.C.

    Google Scholar 

  • EPA (2006) In situ treatment technologies for contaminated soil. EPA 542/F-06/013. U.S. Environmental Protection Agency

    Google Scholar 

  • EPA (2007) Technology reference guide for radioactively contaminated media. EPA 402-R-07-004. U.S. Environmental Protection Agency Office of Air and Radiation Office of Radiation and Indoor Air Radiation Protection Division Center for Radiation Site Cleanup

    Google Scholar 

  • EPA (2016) Current and emerging post-Fukushima technologies, and techniques, and practices for wide area radiological survey, remediation, and waste management. EPA/600/R-16-140. U.S. Environmental Protection Agency

    Google Scholar 

  • Fang Y, Yeh GT, Burgos WD (2003) A generic paradigm to model reaction-based biogeochemical processes in batch systems. Water Resour Res 33:1083–1118

    Google Scholar 

  • Fang Y, Yabusaki SB, Morisson SJ, Amonette JP, Long PE (2009) Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochim Cosmochim Acta 73:6029–6051

    Article  CAS  Google Scholar 

  • Fesenko SV, Sanzharova NI, Wilkins BT, Nisbet AF (1996) FORCON: local decision support system for the provision of advice in agriculture–methodology and experience of practical implementation. Radiat Prot Dosim 64:157–164

    Article  Google Scholar 

  • Fesenko S, Jacob P, Ulanovsky A, Chupov A, Bogdevich I, Sanzharova N (2012) Justification of remediation strategies in the long term after the Chernobyl accident. J Environ Radioact 119:39–47

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994) XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Technol 28:636–639

    Article  CAS  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    Article  CAS  Google Scholar 

  • Hardie SML, McKinley IG (2014) Fukushima remediation: status and overview of future plans. J Environ Radioact 133:75–85

    Article  CAS  Google Scholar 

  • Howard BJ, Wright SM (1999) Spatial analysis of vulnerable ecosystems in Europe: spatial and dynamic prediction of Radiocaesium fluxes into European foods (SAVE). Final Report, Commission of European Communities, Brussels

    Google Scholar 

  • Hu N, Ding D, Li G, Zheng J, Li L, Zhao W, Wang Y (2014) Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129:100–106

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • IAEA (1988) The radiological accident in Goiânia.International Atomic Energy Agency (IAEA). Vienna

    Google Scholar 

  • IAEA (1989) Cleanup of large areas contaminated as a result of a nuclear accident. Technical Reports Series No. 300. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (1992) Disposal of waste from the cleanup of large areas contaminated as a result of a nuclear accident. Technical Reports Series No. 330. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (1996) International basic safety standards for protection against ionising radiation and for the safety of radiation sources. Safety Series No. 115. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (1999) Technologies for remediation of radioactively contaminated sites, IAEA TECDOC-1086. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (2004a) Remediation of sites with dispersed radioactive contamination. Technical Reports Series No. 424. International Atomic Energy Agency (IAEA),Vienna

    Google Scholar 

  • IAEA (2004b) Testing of environmental transfer models using data from the remediation of a radium extraction site report of the remediation assessment working group of BIOMASS theme 2, IAEA-BIOMASS-7, Vienna

    Google Scholar 

  • IAEA (2006a) Applicability of monitored natural attenuation at radioactively contaminated sites. Technical Reports Series No. 445. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (2006b) Remediation of sites with mixed contamination of radioactive and other hazardous substances. Technical Reports Series No. 442. International Atomic Energy Agency (IAEA),Venna

    Google Scholar 

  • IAEA (2011) Radiation protection and safety of radiation sources: international basic safety standards for protecting people and the environment INTERIM EDITION No. GSR Part 3 (Interim) General Safety Requirements. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (2012a) Environmental modelling for radiation safety (EMRAS). A summary report of the results of the EMRAS Programme (2003–2007), Vienna

    Google Scholar 

  • IAEA (2012b) Guidelines for remediation strategies to reduce the radiological consequences of environmental contamination. Technical Report Series No. 475. International Atomic Energy Agency (IAEA), Vienna

    Google Scholar 

  • IAEA (2015) NORM and Legacy Site Assessment (NORMALYSA). http://project.facilia.se/normalysa/software.html

  • IRSN (n.d.) SYMBIOSE. https://gforge.irsn.fr/gf/project/symbiose/

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang YJ, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate contaminated aquifer. Environ Sci Technol 38:468–475

    Article  CAS  Google Scholar 

  • ITRC (2008) Decontamination and decommissioning of radiologically contaminated facilities. Interstate Technology and Regulatory Council (ITRC), Washington, DC

    Google Scholar 

  • Jacob P, Fesenko S, Kirsakova SK, Likhtareva IA, Schotola C, Alexakhin RM, Zhuchenko YM, Kovgan L, Sanzharova NI, Ageyets V (2001) Remediation strategies for rural territories contaminated by the Chernobyl accident. J Environ Radioact 56:51–76

    Article  CAS  Google Scholar 

  • Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N, Grebenshikova N, Isamov N, Lazarev N, Panov A, Ulanovsky A, Zhuchenko Y, Zhurba M (2009) Rural areas affected by the Chernobyl accident: radiation exposure and remediation strategies. Sci Total Environ 408:14–25

    Article  CAS  Google Scholar 

  • Jacobs GK, Spalding BP, Carter JG, Koegler SS (1988) In situ vitrification demonstration for the stabilization of buried wastes at the Oak Ridge National Laboratory. Nuc Chem Waste Manag 8:249–259

    Article  CAS  Google Scholar 

  • Jang HB, Yang JS, Um W (2015) Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA. J Radioanal Nucl Chem 304:615–625

    Article  CAS  Google Scholar 

  • Jimenez-Martin A, Martin M, Perez-Sanchez D, Mateos A, Dvorzhak A (2016) Zapadnoe uranium mill tailings: a fuzzy approach. MVLSC 26:529–540

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V, Renshaw JC, Liven FR, Bonch-Osmolovskaya EA, Birkeland NK, Medvedeva-Lyalikova NN, Lloyd JR (2005) Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterra bacterium ferri reducens. Appl Environ Microbiol 71:6423–6426

    Article  CAS  Google Scholar 

  • Kim GN, Jung YH, Lee JJ, Moon JK, Jung CH (2008) Development of electrokinetic-flushing technology for the remediation of contaminated soil around nuclear facilities. J Indust Eng Chem 14:732–738

    Article  CAS  Google Scholar 

  • Kim GN, Lee SS, Shon DB, Lee KW, Chung US (2010) Development of pilot-scale electrokinetic remediation technology to remove 60Co and 137Cs from soil. J Indust Eng Chem 16:986–991

    Article  CAS  Google Scholar 

  • Kim GN, Shon DB, Park HM, Lee KW, Chung US (2011) Development of pilot-scale electrokinetic remediation technology for uranium removal. Sep Purif Technol 80:67–72

    Article  CAS  Google Scholar 

  • Kim GN, Kim SS, Park HM, Kim WS, Moon JK, Hyeon JH (2012) Development of complex electrokinetic decontamination method for soil contaminated with uranium. Electrochim Acta 86:49–56

    Article  CAS  Google Scholar 

  • Kim GN, Kim SS, Park UR, Moon JK (2015) Decontamination of soil contaminated with cesium using electrokinetic-electrodialytic method. Electrochim Acta 181:233–237

    Article  CAS  Google Scholar 

  • Kim GN, Kim I, Kim SS, Choi JW (2016) Removal of uranium from contaminated soil using indoor electrokinetic decontamination. J Radioanal Nucl Chem 309:1175–1181

    Article  CAS  Google Scholar 

  • Kim SS, Han GS, Kim GN, Koo DS, Kim IG, Choi JW (2016) Advanced remediation of uranium-contaminated soil. J Environ Radioact 164:239–244

    Article  CAS  Google Scholar 

  • Langley S, Gault AG, Ibrahim A, Takahashi Y, Renaud R, Fortin D, Clark ID, Ferris FG (2009) Strontium desorption from bacteriogenic iron oxides (BIOS) subjected to microbial Fe(III) reduction. Chem Geol 262:217–228

    Article  CAS  Google Scholar 

  • Law GTW, Geissler A, Burke IT, Livens FR, Lloyd JR, McBeth JM, Morris K (2011) Uranium redox cycling in sediment and biomineral systems. Geomicrobiol J 28:497–506

    Article  CAS  Google Scholar 

  • Lehours A, Rabiet M, Morel-Desrosiers N, Morel J, Jouve L, Arbeile B, Mailhot G, Fonty G (2010) Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France). Geomicrobiol J 27:714–722

    Article  CAS  Google Scholar 

  • Lehto J (1994) Cleanup of large radioactive –contaminated areas and disposal of generated waste. Final report of the KAN2 project. Copenhagen Tema Nord 1994:567

    Google Scholar 

  • Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86:646–652

    Article  CAS  Google Scholar 

  • Lietsch C, Hoth N, Kassahun A (2015) Investigation of phenomena in uranium mine waters using hydrogeochemical modeling – a case study, In: Merkel BJ, Arab A (eds) Uranium – Past and Future Challenges. Proceedings of the 7th international conference of uranium mining and hydrogeology, Springer

    Google Scholar 

  • Lloyd JR, Sole VA, van Praagh CVG, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(II) reducing bacteria. Appl Environ Microbiol 66:3743–3749

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1992a) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992b) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  • Lu X, Li X, Yun P, Luo D, Wang L, Ren C, Chen C (2012) Measurement of natural radioactivity and assessment of associated hazards in soil around Baoji second coal-fired thermal power plant, China. Radiat Prot Dosim 148:219–226

    Article  CAS  Google Scholar 

  • Luey J (1993) In situ vitrification: demonstrated capabilities and potential applications. Presented at the Office of Technology Development 2nd semi-annual information meeting, January 25–27. Houston, Texas

    Google Scholar 

  • Luey J, Koegler SS, Kuhn WL, Lowery PS, Winkelman RG (1992) In Situ Vitrification of a Mixed-Waste Contaminated Soil Site: The 116-B-6A Crib at Hanford. PNl-8281. Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

    Google Scholar 

  • Madden AS, Smith AC, Balkwill DL, Fagan LA, Phelps TJ (2007) Microbial uranium immobilization independent of nitrate reduction. Environ Microbiol 9:2321–2330

    Article  CAS  Google Scholar 

  • MARTAC (2003) Rehabilitation of former nuclear test sites at Emu and Maralinga (Australlia). Report by the Maralinga Rehabilitation Technical Advisory Committee

    Google Scholar 

  • Mehta VS, Maillot F, Wang Z, Catalano JG, Giammar DE (2014) Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate. Chem Geol 364:66–75

    Article  CAS  Google Scholar 

  • Mehta VS, Maillot F, Wang Z, Catalano JG, Giammar DE (2015) Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Res 69:307–317

    Article  CAS  Google Scholar 

  • MOE (2013) Decontamination guidelines. Ministry of the Environment. Retrieved from http://josen.env.go.jp/en/framework/pdf/decontamination_guidelines_2nd.pdf

  • MOE (2015) FY2014 decontamination report. Ministry of the Environment. Retrieved from http://josen.env.go.jp/en/cooperation/pdf/decontamination_report1503_01.pdf

  • Monte L (2001) A generic model for assessing the effects of countermeasures to reduce the radionuclide contamination levels in abiotic components of fresh water systems and complex catchments. Env Model Soft 16:669–690

    Article  Google Scholar 

  • Moore HR, Steiner RE, Fallon E, Repp CL, Hemann MR, Rabideau AJ (2000) Permeable treatment wall pilot project at the West Valley demonstration project. Proceedings of waste management 2000, 27 February–2 March, 2000. Tucson, AZ

    Google Scholar 

  • Naeem H, Bhatti HN, Sadaf S, Iqbal M (2017) Uranium remediation using modified Vigna radiata waste biomass. Appl Radiat Isot 123:94–101

    Article  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • Nisbet AF (2002) Management options for food production systems contaminated as a result of a nuclear accident. Radioprot Colloq 37:115–120

    Google Scholar 

  • Nisbet AF, Woodman RFM (2000) Options for the management of Chernobyl restricted areas in England and Wales. J Environ Radioact 51:239–254

    Article  CAS  Google Scholar 

  • Nishikiori T, Suzuki S (2017) Radiocesium decontamination of a riverside in Fukushima, Japan. J Environ Radioact 177:58–64

    Article  CAS  Google Scholar 

  • Noshkin V, Robison W (1997) Assessment of a radioactive waste disposal site at Enewetak Atoll. Health Phys 73:234–247

    Article  CAS  Google Scholar 

  • Nyman JL, Wu HI, Gentile ME, Kitanidis PK, Criddle CS (2007) Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI). Environ Sci Technol 41:6528–6533

    Article  CAS  Google Scholar 

  • Oughton DH (2013) Social and ethical issues in environmental remediation projects. J Environ Radioact 119:21–25

    Article  CAS  Google Scholar 

  • Paajanen A, Lehto J (1992) Disposal of Radioactive Wastes from the Cleanup of Large Areas Contaminated in Nuclear Accidents, A Literature Survay. Nordic Nuclear Safety Research Program 1990–93. Projekt KAN-2

    Google Scholar 

  • Perez-Sanchez D, Jimenez A, Mateos A, Dvorzhak A (2015) Fuzzy MCDA for remediation of a uranium tailing. In: Merkel BJ, Arab A (eds) Uranium–past and future challenges. Proceedings of the 7th international conference of uranium mining and hydrogeology, Springer, Cham

    Google Scholar 

  • Petrović J, Ćujić M, Đorđević M, Dragovic R, Gajic B, Miljanic S, Dragovic S (2013) Spatial distribution and vertical migration of 137Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident. Environ Sci Proces Imp 15:1279–1289

    Article  CAS  Google Scholar 

  • Petrović J, Dragović S, Dragović R, Đorđević M, Đokić M, Ćujić M (2016a) Spatial and vertical distribution of 137Cs in soils in the erosive area of south eastern Serbia (Pčinja and South Morava River Basins). J Soil Sed 16:1168–1175

    Article  CAS  Google Scholar 

  • Petrović J, Dragović S, Dragović R, Đorđević M, Đokić M, Zlatković B, Walling D (2016b) Using 137Cs measurements to estimate soil erosion rates in the Pčinja and South Morava River Basins, southeastern Serbia. J Environ Radioact 158–159:71–80

    Article  CAS  Google Scholar 

  • Plymale AE, Fredrickson JK, Zachara JM, Dohnalkova AC, Heald SM, Moore DA, Kennedy DW, Marshall MJ, Wang CM, Resch CT, Nachimuthu P (2011) Competitive reduction of pertechnetate ((TcO4)-Tc-99) by dissimilatory metal reducing bacteria and biogenic Fe(II). Environ Sci Technol 45:951–957

    Article  CAS  Google Scholar 

  • PNNL (2009) Scientific opportunities to reduce risk in groundwater and soil remediation. PNNL 18516. Pacific Northwest National Laboratory (PNNL)

    Google Scholar 

  • Pruess K (1991) TOUGH2: a general numerical simulator for multiple phase fluid and heat flow, report LBL-29400. Lawrence Berkeley Laboratory, Berkeley

    Book  Google Scholar 

  • Rabideau AJ, van Benschoten J, Patel A, Bandilla K (2005) Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater. J Contam Hydro 79:1–24

    Article  CAS  Google Scholar 

  • Rafferty B, Brennan M, Dawson D, Dowding D (2000) Mechanisms of 137Cs migration in coniferous forest soils. J Environ Radioact 48:131–143

    Article  CAS  Google Scholar 

  • Renshaw JC, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660

    Article  CAS  Google Scholar 

  • Robinson SM, Arnold WD, Byers CH (1991) Multicomponent ion exchange equilibria in zeolite. In: Tedder DW, Pohland FG (eds) Emerging Technologies in Hazardous Waste Treatment. ACS Symposium Series No. 486. Kluwer Academic Publishers, New York

    Google Scholar 

  • Rudy CG, Vovk IF (1996) Radioactive waste management issues related to the conversion of the Chernobyl Sarcophagus into an ecologically safe system. One decade after Chernobyl: summing up the consequences of the accident. IAEA-TECDOC-964. Vienna, Austria

    Google Scholar 

  • Saleh HM (2016) Biological remediation of hazardous pollutants using water hyacinth – a review. J Biotech Res 2:80–91

    Google Scholar 

  • Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK, Löffler FE (2007) Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environ Microbiol 9:2885–2893

    Article  CAS  Google Scholar 

  • Screening Report –Port Hope Project (2006) The port hope long-term low-level radioactive waste management project. Natural Resources Canada, the Canadian Nuclear Safety Commission and Fisheries and Oceans Canada, Ottawa

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166

    Article  Google Scholar 

  • Silva EBS, Fernandes NS, Costa ECTA, Silva DR, de Araújo DM, Martínez-Huitle CA (2017) Scale-up on electrokinetic treatment of polluted soil with petroleum: effect of operating conditions. Int J Electrochem Sci 12:4001–4015

    Article  CAS  Google Scholar 

  • Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T (2011) Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 108:264–276

    Article  CAS  Google Scholar 

  • Soudek P, Petrova S, Benesova D, Tykva R, Vankova R, Vanek T (2007) Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period. J Environ Radioact 97:76–82

    Article  CAS  Google Scholar 

  • Spain AM, Krumholz LR (2011) Nitrate-reducing bacteria at the nitrate and radionuclide contaminated Oak ridge integrated field research challenge site: a review. Geomicrobiol J 28:418–429

    Article  CAS  Google Scholar 

  • Spalding BP, Jacobs GK, Dunbar NW, Naney MT, Tixier JS, Powell TD (1992) Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL. Prepared by the Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Sugiura Y, Kanasashi T, Ogata Y, Ozawa H, Takenaka C (2016) Radiocesium accumulation properties of Chengiopanax sciadophylloides. J Environ Radio 151:250–257

    Article  CAS  Google Scholar 

  • Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. Rev Mineral Geochem 38:393–432

    CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KA, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346

    Article  CAS  Google Scholar 

  • Thorpe CL, Lloyd JR, Law GTW, Burke IT, Shaw S, Bryan ND, Morris K (2012) Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments. Chem Geol 306:114–122

    Article  CAS  Google Scholar 

  • Thorpe CL, Boothman C, Lloyd JR, Law GTW, Bryan ND, Atherton N, Livens FR, Morris K (2014) The interactions of strontium and technetium with Fe(II) bearing biominerals: implications for bioremediation of radioactively contaminated land. Appl Geochem 40:135–143

    Article  CAS  Google Scholar 

  • UK DEFRA (2003) The Radioactively Contaminated Land Exposure Assessment Methodology (RCLEA). https://www.gov.uk/government/publications/rclea-software-application

  • Ulanovsky A, Jacob P, Fesenko S, Bogdevitch I, Kashparov V, Sanzharova N (2011) ReSCA: decision support tool for remediation planning after the Chernobyl accident. Radiat Environ Biophys 50:67–83

    Article  CAS  Google Scholar 

  • US DOE (1999) Final site observational work plan for the UMTRA project Old Rifle site GJO-99–88-TAR. Colorado, United States Department of Energy (US DOE)/Grand Junction

    Google Scholar 

  • US DOE (2004) Monticello mill tailings site, operable unit III–remedial investigation addendum/focused feasibility study. GJO-2003-413-TAC.United States Department of Energy

    Google Scholar 

  • US DOE (2009) Explanation of significant difference for the Monticello mill tailings (USDOE) site operable unit III, surface water and ground water, Monticello, Utah.Doc. No S0429400. United States Department of Energy

    Google Scholar 

  • US DOE (2010) 200 west area groundwater pump-and-treat remedial design report, DOE/RL-2010-13, rev. 1.United States Department of Energy, Richland Operations Office. Richland, Washington, DC

    Google Scholar 

  • US DOE, US EPA, Ecology (2009) Explanation of significant differences for the 300-FF-2 operable unit interim action record of decision Hanford site Benton County, Washington. United States Department of Energy, United States Environmental Protection Agency, Washington State Department of Ecology. Richland, Washington, DC

    Google Scholar 

  • US EPA (2002) Preliminary Remediation Goal (PRG). https://epa-prgs.ornl.gov/cgi-bin/radionuclides/rprg_search

  • US EPA (2004) Dose Compliance Concentration (DCC). https://epa-dccs.ornl.gov/cgibin/dose_search

  • US EPA (2007) The technology reference guide for radioactively contaminated media EPA-402-R-07-004. United States Environmental Protection Agency (US EPA). Washington, DC

    Google Scholar 

  • Van der Perk M, Burrough PA, Voigt G (1998) GIS based modelling to identify regions of Ukraine, Belarus, and Russia affected by residues of the Chernobyl nuclear power plant accident. J Hazard Mater 61:85–90

    Article  Google Scholar 

  • Vives i Batlle J, Beresford NA, Beaugelin-Seiller K, Bezhenar R, Brown J, Cheng JJ, Ćujić M, Dragović S, Duffa C, Fiévet B, Hosseini A, Jung KT, Komboj S, Keum DK, Kryshev A, LePoire D, Maderich V, Min BJ, Periáñez R, Sazykina T, Suh KS, Yu C, Wang C, Heling R (2016) Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario. J Environ Radioact 153:31–50

    Article  CAS  Google Scholar 

  • Vovk IF, Blagoyev VV, Lyashenko AN, Kovalev IS (1993) Technical approaches to decontamination of terrestrial environments in the CIS (former USSR). Sci Total Environ 137:49–63

    Article  CAS  Google Scholar 

  • Wada K, Yoshikawa T, Murata M (2012) Decontamination work in the area surrounding Fukushima Dai-ichi Nuclear Power Plant: another occupational health challenge of the nuclear disaster. Arch Environ Occ Health 67:128–132

    Article  CAS  Google Scholar 

  • Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr2+ mobility at contaminated nuclear sites. Appl Geochem 27:482–1491

    Article  CAS  Google Scholar 

  • Wallace SH, Shaw S, Morris K, Small JS, Burke IT (2013) Alteration of sediments by hyperalkaline k-rich cement leachate: implications for strontium adsorption and incorporation. Environ Sci Technol 47:3694–3700

    Article  CAS  Google Scholar 

  • Wellman DM, Glovack JN, Parker K, Richards EL, Pierce EM (2008) Sequestration and retention of uranium(VI) in the presence of hydroxylapatite under dynamic geochemical conditions. Environ Chem 5:40–50

    Article  CAS  Google Scholar 

  • Wilkins MJ, Livens FR, Vaughan DJ, Beadle I, Lloyd JR (2007) The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site. Geobiology 5:293–301

    Article  CAS  Google Scholar 

  • Williams KH, Long PE, Davis JA, Wilkins MJ, N’Guessan AL, Steefel CI, Yang L, Newcomer D, Spane FA, Kerkhof LJ, McGuinness L, Dayvault R, Lovley DR (2011) Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J 28:519–539

    Article  CAS  Google Scholar 

  • Williams KH, Bargar JR, Lloyd JR, Lovley DR (2012) Bioremediation of uranium contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 24:489–497

    Article  CAS  Google Scholar 

  • Wu WM, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Van Nostrand J, Gentry T, Lowe K, Carroll S, Luo W, Fields MW, Gu B, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2007) In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723

    Article  CAS  Google Scholar 

  • Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J, Jaffe PR, Morrison SJ, Dayvault RD, White DC, Anderson RT (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modelling of transport and biological processes. J Contam Hydrol 93:216–235

    Article  CAS  Google Scholar 

  • Yang JS, Kwon MJ, Choi J, Baek K, O’Loughlin J (2014) The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere 117:79–86

    Article  CAS  Google Scholar 

  • Yeh GT, Tripathi VS (1990) HYDROGEOCHEM: a coupled model of HYDROlogical transport and GEOCHEMical equilibrium of multi component systems, ORNL 6371, Oak Ridge National Laboratory. Oak Ridge, Tennessee

    Google Scholar 

  • Yeh GT, Gwo JP, Siegel MD, Li M-H, Fang Y, Zhang F, Luo W, Yabusaki SB (2013) Innovative mathematical modeling in environmental remediation. J Environ Radioact 119:26–38

    Article  CAS  Google Scholar 

  • Zachara JM, Long PE, Bargar J, Davis JA, Fox P, Fredrickson JK, Freshley MD, Konopka AE, Liu C, McKinley JP, Rockhold ML, Williams KH, Yabusaki SB (2013) Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. J Contam Hydrol 147:45–72

    Article  CAS  Google Scholar 

  • Zhang F, Yeh GT, Parker JC, Brooks SC, Pace MN, Kim YJ, Jardine PM, Watson DB (2007) A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions. J Contam Hydrol 92:10–32

    Article  CAS  Google Scholar 

  • Zhang R, Chen C, Li J, Wang X (2015) Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study. J Collo Inter Sci 460:237–246

    Article  CAS  Google Scholar 

  • Zyvoloski GA, Robinson BA, Dash ZV, Trease LL (1994) Models and methods summary for the FEHM application, FEHM MMS SC-194, Los Alamos National Laboratory. Los Alamos, New Mexico

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. III43009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Dragović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ćujić, M., Petrović, J., Dragović, S. (2019). Review of Remediation Approaches Implemented in Radioactively Contaminated Areas. In: Gupta, D., Voronina, A. (eds) Remediation Measures for Radioactively Contaminated Areas. Springer, Cham. https://doi.org/10.1007/978-3-319-73398-2_1

Download citation

Publish with us

Policies and ethics