The Unsettling Playfulness of Computing

Part of the Mathematics Education in the Digital Era book series (MEDE, volume 11)


Calculation algorithms are fated to be supplanted, and the art of using them replaced by different sets of skills, and eventually: machines. Yet, using and creating algorithms is still mathematically relevant and in fact contributes to the evolution of mathematics itself. In school and everyday life, however, calculating is often seen as a mindless, boring activity. Algorithms are indeed designed to require as less thinking as possible. I suggest that taking a playful attitude towards algorithms in school is essential so that they can be appreciated in full. Playing with algorithms allow them to really become objects of interest, and be offered as one particular way of experiencing mathematics.


Play Algorithms Epistemology Perfection–imperfection 


  1. Abdeljaouad, M. 2005. Les arithmétiques arabes: 9e-15e siècles. Tunis: Ibn Zeidoun.Google Scholar
  2. Abdeljaouad, M., and J. Oaks. 2012. De la découverte d’al-Lubâb fî sharh ‘a’mâl al-hisâb d’al-Hawârî al-Misrâtî. Actes du 11e Colloque Maghrébin sur l’Histoire des mathématiques Arabes, Alger-Kooba: École Normale Supérieure.Google Scholar
  3. Askey, R. 1995. Cube root algorithms. Mathematics in School 24 (2): 42–43.Google Scholar
  4. Babbage, C. 1864/2011. Passages from the Life of a Philosopher. Cambridge: Cambridge University Press.Google Scholar
  5. Ballheim, C. 1999. How our readers feel about calculators. In Mathematics education dialogues, ed. Z. Usiskin, 4–5. Reston, VA: NCTM.Google Scholar
  6. Baroody, A.J., and A. Dowker (eds.). 2003. The development of arithmetic concepts and skills: Constructive adaptive expertise. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  7. Borwein, J., and D. Bailey. 2003. Mathematics by experiment: plausible reasoning in the 21st century. Natick, MA: A K Peters.Google Scholar
  8. Borwein, J., D. Bailey, and R. Girgensohn. 2004. Experimentation in mathematics: computational paths to discovery. Natick, MA: A K Peters.Google Scholar
  9. Bretherton, I. 1984. Symbolic play: The development of social understanding. New York: Academic Press.Google Scholar
  10. Butlen, D., and M. Peizard. 2000. Calcul mental et résolution de problèmes numériques au début du collège. Repères IREM 41: 5–24.Google Scholar
  11. Carpenter, T.P. 1986. Conceptual knowledge as a foundation for procedural knowledge. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics, 113–132. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  12. Cerquetti-Aberkane, F., and A. Rodriguez. 2002. Faire des mathématiques avec des images et des manuscrits historiques du cours moyen au collège. Champigny-sur-Marne, France: CRDP de l’académie de Créteil.Google Scholar
  13. Chabert, J.-L. (dir.), E. Barbin, M. Guillemot, A. Michel-Pajus, J. Borowczyk, A. Djebbar, J.-C. Martzloff. 1994. Histoire d’algorithmes: du caillou à la puce. Paris: Belin.Google Scholar
  14. Chaitin, G.J. 2004. Thoughts on the Riemann hypothesis. The Mathematical Intelligencer 26 (1): 4–7.CrossRefGoogle Scholar
  15. Châtelet, G. 2000. Figuring space: Philosophy, mathematics, and physics. Dordrecht & Boston: Kluwer.CrossRefGoogle Scholar
  16. Daston, L. 1994. Enlightenment calculations. Critical Inquiry 21 (1): 182–202.CrossRefGoogle Scholar
  17. Davis, B. 1996. Teaching mathematics: Toward a sound alternative. New York: Garland Publishing Inc.Google Scholar
  18. Davis, P.J. 1972. Fidelity in mathematical discourse: Is one and one really two? American Mathematical Monthly, 252–263.CrossRefGoogle Scholar
  19. Davis, P.J. 2006. Mathematics & common sense: A case of creative tension. Natick, MA: A K Peters/Boca Raton, FL: CRS Press.Google Scholar
  20. de Prony, G.R. 1824. Notice sur les grandes tables logarithmiques et trigonometriques: adaptées au nouveau système métrique décimal. Paris: Didot.Google Scholar
  21. Djebbar, A. 1997. Matériaux pour l’étude des problèmes récréatifs de la tradition mathématique arabe (IXe-XVe siècles). Nantes: Université d’été de Nantes.Google Scholar
  22. Dowek, G. 2007. Les métamorphoses du calcul: une étonnante histoire de mathématiques. Paris: Le Pommier.Google Scholar
  23. Eisner, E.W. 1990. The role of art and play in children’s cognitive development. In Children’s play and learning: Perspectives and policy implications, ed. E. Klugman and S. Smilansky, 43–56. New York: Teachers College Press.Google Scholar
  24. Emmer, M. 1998. The mathematics of war. ZDM 30 (3): 74–77.Google Scholar
  25. Ernest, P. 1994. Mathematics, education, and philosophy: An international perspective. London & Washington, D.C.: The Falmer Press.Google Scholar
  26. Ernest, P. 2014. Certainty in mathematics: Is there a problem? Philosophy of Mathematics Education Journal 28: 1–22.Google Scholar
  27. Franklin, J. 1987. Non-deductive logic in mathematics. British Journal for the Philosophy of Science 38 (1): 1–18.CrossRefGoogle Scholar
  28. Furinghetti, F. 1993. Images of mathematics outside the community of mathematicians: Evidence and explanations. For the Learning of Mathematics 13 (2): 33–38.Google Scholar
  29. Ginsburg, H.P. 2006. Mathematical play and playful mathematics: A guide for early education. In Play = Learning: How play motivates and enhances children’s cognitive and social-emotional growth, ed. D. Singer et al., 145–165. Oxford: Oxford University Press.Google Scholar
  30. Grier, D.A. 2013. When computers were human. Princeton, NJ: Princeton University Press.Google Scholar
  31. Hart, K.M. (ed.). 1981. Children’s understanding of mathematics. London: John Murray.Google Scholar
  32. Hilton, P. 1980. Math anxiety: Some suggested causes and cures: Part 2. Two-Year College Mathematics Journal 11 (4): 246–251.CrossRefGoogle Scholar
  33. Heege, H.T. 1983. The multiplication algorithm: An integrated approach. For the Learning of Mathematics 3 (3): 29–34.Google Scholar
  34. Holton, D., A. Ahmed, H. Williams, and C. Hill. 2001. On the importance of mathematical play. International Journal of Mathematical Education in Science and Technology 32 (3): 401–415.CrossRefGoogle Scholar
  35. Huszár, K., and M. Rolínek. 2014. Playful Math—An introduction to mathematical games. Sommer campus am IST Austria. Online at:
  36. Jankvist, U.T. 2007. Empirical research in the field of using history in mathematics education. Nordic Studies in Mathematics Education 12 (3): 83–105.Google Scholar
  37. Kant, I. 1934/1781. Critique of Pure Reason. London: Macmillan.Google Scholar
  38. Katz, V.J. (Ed.). 2000. Using history to teach mathematics: An international perspective. Washington, D.C.: The Mathematical Association of America.Google Scholar
  39. Kilpatrick, J., J. Swafford, and B. Findell. 2001. The strands of mathematical proficiency. In J. Kilpatrick, J. Swafford, and B. Findell. (eds.), Adding it up: Helping children learn mathematics (pp. 115–155). Washington, D.C.: National Academies Press.Google Scholar
  40. Kitcher, P., and W. Aspray (Eds.). 1988. History and philosophy of modern mathematics. Minneapolis: University of Minnesota.Google Scholar
  41. Klein, J. 1992. Greek mathematical thought and the origin of algebra. New York, NY: Dover Publications.Google Scholar
  42. Kline, M. 1982. Mathematics: The loss of certainty. New York, NY: Oxford University Press.Google Scholar
  43. Körner, T.W. 1996. The pleasures of counting. Cambridge: Cambridge University Press.Google Scholar
  44. Lakatos, I. 1976. Proofs and refutations: The logic of mathematical discovery. Cambridge etc.: Cambridge University Press.Google Scholar
  45. Leontiev [Leontyev], A.N. 1979. The problem of activity in psychology. In The concept of activity in Soviet psychology, ed. J.V. Wertsch, 37–71. Armonk, NY: Sharpe.Google Scholar
  46. Lerman, S. 1990. Alternative perspectives of the nature of mathematics and their influence on the teaching of mathematics. British Educational Research Journal 16 (1): 53–61.CrossRefGoogle Scholar
  47. Madell, R. 1985. Childrens’ natural processes. Arithmetic Teacher 32: 20–22.Google Scholar
  48. Maheux, J.F. 2010. How do we know? An epistemological journey in the day-to-day, moment to-moment, of researching teaching and learning in mathematics education. Doctoral thesis, Victoria, BC: University of Victoria.Google Scholar
  49. Maheux, J.F. 2011. Epistemological issues to educational use of technology: The case of calculators in elementary mathematics. In L. Gómez Chova, D. Martí Belenguer, A. López Martínez (Eds.), 3rd International Conference on Education and New Learning Technologies, July 4th-6th, 2011. EDULEARN11 Proceedings CD. Barcelona, Spain: International Association of Technology, Education and Development, 495–505.Google Scholar
  50. Maheux, J.F., and J. Proulx. 2018. Mathematics education (research) liberated from teaching and learning: Towards (the future of) doing mathematics. The Mathematics Enthusiast 15 (1): 78–99.Google Scholar
  51. McIntosh, A., B.J. Reys, and R.E. Reys. 1992. A proposed framework for examining basic number sense. For the Learning of Mathematics 12: 2–8.Google Scholar
  52. Morley, A. 1932. Teaching and learning algorithms. For the Learning of Mathematics 2 (2): 50–51.Google Scholar
  53. Netz, R. 2009. Ludic proof: Greek mathematics and the Alexandrian aesthetic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Neyland, J. 2001. An ethical critique of technocratic mathematics education: Towards an ethical philosophy of mathematics education. Doctoral dissertation, Victoria University of Wellington.Google Scholar
  55. Neyland, J. 2004. Toward a postmodern ethics of mathematics education. In Mathematics education within the postmodern, ed. M. Walshaw, 55–73. Greenwich, CT: Information Age Publishing.Google Scholar
  56. Neyland, J. 2010. Rediscovering the spirit of education after scientific management. Rotterdam & Boston & Taipei: Sense Publishers.Google Scholar
  57. Ormell, C. 1992. New thinking about the nature of mathematics. Geelong, Vic.: Deakin University, Centre for Studies in Mathematics, Science and Environmental Education.Google Scholar
  58. Pitri, E. 2001. The role of artistic play in problem solving. Art Education 54 (3): 46–51.CrossRefGoogle Scholar
  59. Plunkett, S. 1979. Decomposition and all that rot. Mathematics in Schools 8 (3): 2–5.Google Scholar
  60. Proulx, J., and M. Beisiegel. 2009. Mathematical curiosities about division of integers. The Mathematics Enthusiast 6 (3): 411–422.Google Scholar
  61. Rabardel, P. 1995. Les hommes et les technologies; approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  62. Rashed, R. 1997. Histoire des sciences arabes, Paris: Seuil.Google Scholar
  63. Russel, B. 1967. The Autobiography of Bertrand Russell: 1872–1914 (volume 1). London: George Allen & Unwin Ltd.Google Scholar
  64. Ruthven, K. 2009. Towards a calculator-aware number curriculum. Mediterranean Journal of Mathematics Education 8 (1): 111–124.Google Scholar
  65. Sewell, B. 1981. Use of mathematics by adults in daily life. Leicester: Advisory Council for Adult and Continuing Education.Google Scholar
  66. Shapiro, S. 2000. Thinking about mathematics. Oxford: Oxford University Press.Google Scholar
  67. Shechtman, N., and J. Knudsen. 2009. Bringing out the playful side of mathematics: Using methods from improvisational theater in professional development for urban middle school math teachers. Play and Performance: Play and Culture Studies 11: 105–134.Google Scholar
  68. Thompson, A.G. 1984. The relationship of teachers’ conceptions of mathematics and mathematics teaching to instructional practice. Educational Studies in Mathematics 15 (2): 105–127.CrossRefGoogle Scholar
  69. Thompson, I. 1994. Young children’s idiosyncratic written algorithms for addition. Educational Studies in Mathematics 26 (4): 323–345.CrossRefGoogle Scholar
  70. Tucker, K. 2014. Mathematics through play in the early years. London: SAGE.Google Scholar
  71. Tymoczko, T. 1998. New directions in the philosophy of mathematics. Princeton, NJ: Princeton University Press.Google Scholar
  72. Tzanakis, C., A. Arcavi, C.C. de Sa, M. Isoda, C.K. Lit, M. Niss, et al. 2002. Integrating history of mathematics in the classroom: An analytic survey. In History in mathematics education: The ICMI Study, eds. J. Fauvel and J. Van Maanen, 201–240. New York etc.: Kluwer Academic Publishers.CrossRefGoogle Scholar
  73. Van Oers, B. 2010. Emergent mathematical thinking in the context of play. Educational Studies in Mathematics 74 (1): 23–37.CrossRefGoogle Scholar
  74. Vygotsky, L.S. 1966. Igra i ee rol’ v umstvennom razvitii rebenka (Play and its role in the mental development of the child; in Russian). Voprosy psikhologii, 12(6), 62–76. [English translation by N. Veresov and M. Barrs is published in 2016 in International Research in Early Childhood Education 7 (2): 3–25 and available online at]
  75. Weeks, C. 2008. Interview with Evelyne Barbin. HPM Newsletter 67: 1–4.Google Scholar
  76. Whitton, S. 1998. The playful ways of mathematicians’ work. In Play from birth to twelve and beyond: Contexts, perspectives, and meanings, ed. D.P Fromberg and D. Bergen, 473–481. New York and London: Garland Publishing.Google Scholar
  77. Wiener, N. 1915. Is mathematical certainty absolute? The Journal of Philosophy, Psychology and Scientific Methods, 568–574.CrossRefGoogle Scholar
  78. Wilkes, M.V. 1956. Automatic digital computers. New York: Wiley.Google Scholar
  79. Young-Loveridge, J., M. Taylor, S. Sharma, and N. Hāwera. 2006. Students’ perspectives on the nature of mathematics. In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds.), Identities, Cultures and Learning Spaces. (Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia). Adelaide, SA: MERGA, vol. 2, pp. 583–590. Available online at

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université du Québec à MontréalMontréalCanada

Personalised recommendations