Advertisement

The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms

  • Li Lian Wong
  • Dinh Thinh Do
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 12)

Abstract

Heat shock proteins (HSP) are class of conserved and ubiquitous molecular chaperones present in all living organisms from primitive bacteria to humans. Numerous evidences accumulated last decades have proven multiple functions of HSP in aquatic organisms. Besides fundamentally respond to thermal stress, HSP are also stimulated by other extracellular stresses including salinity, pH, hypoxia, pollutants and pathogens. The induction of HSP towards multiple environmental stressors is to protect aquatic organisms. The mechanism and pathway involved in HSP induction are relatively complicated but are systematic to most cellular stressors. Given the vital functions of HSP in cellular protein protection and immunity defences, HSP-based vaccines and HSP-induced compounds have been developed and applied for the health management of aquatic organisms. Aquaculture species treated with these products have shown increased HSP productions, which have effectively, protect them against various stresses. Application of HSP based therapy in aquaculture practices proves as a promising approach in boosting aquaculture production and sustaining food security.

Keywords

Aquaculture Aquatic organisms cDNA Gene expression Heat shock protein-based therapy Stressors 

Abbreviations

HSC

Heat shock cognate proteins

HSE

Heat shock elements

HSF

Heat shock factors

HSP

Heat shock proteins

PAH

Polycyclic aromatic hydrocarbon

PCB

Polychlorinated biphenyl

ROS

Species reactive oxygen

SHSP

Small heat shock proteins

Notes

Acknowledgements

This book chapter was written with the support from Institute of Tropical Aquaculture (AKUATROP) in Universiti Malaysia Terengganu, Malaysia, Department of Biotechnology in Sangmyung University, Republic of Korea and Institute of Marine Environment and Resources in Vietnam Academy of Science and Technology, Vietnam. The authors thank these institutions for providing necessary facilities to complete this work. The authors also acknowledge the Ministry of Higher Education, Malaysia (RAGS Vote No. 57079) for providing research funds in initiating research about HSP in their currently studied fish (Tor tambroides).

References

  1. Abane, R., & Mezger, V. (2010). Roles of heat shock factors in gametogenesis and development. FEBS Journal, 277, 4150–4172.PubMedCrossRefGoogle Scholar
  2. Abdel-Gawad, F. K. H., & Khalil, W. K. (2013). Modulation of stress related protein genes in the bass (Epinephelus guaza) caught from the Gulf of Suez, the Red Sea, Egypt. Ecotoxicology and Environment Safety, 96(1), 175–181.CrossRefGoogle Scholar
  3. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.CrossRefGoogle Scholar
  4. Akerfelt, M., Trouillet, D., Mezger, V., & Sistonen, L. (2007). Heat shock factors at a crossroad between stress and development. Annals of New York Academy of Science, 1113, 15–27.CrossRefGoogle Scholar
  5. Aleng, N. A., Sung, Y. Y., MacRae, T. H., & Abd Wahid, M. E. (2015). Non-lethal heat shock of the Asian green mussel, Perna viridis, promotes Hsp70 synthesis, induces thermotolerance and protects against vibrio infection. PLoS One, 10, e0135603.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ali, K. S., Dorgai, L., Abraham, M., & Hermesz, E. (2003). Tissue- and stressor-specific differential expression of two hsc70 genes in carp. Biochemical and Biophysical Research Communications, 307, 503–509.PubMedCrossRefGoogle Scholar
  7. Arai, A., Naruse, K., Mitani, H., & Shima, A. (1995). Cloning and characterization of cDNAs for 70-kDa heat-shock proteins Hsp70 from two fish species of the genus Oryzias. The Japanese Journal of Genetics, 70, 423–433.PubMedCrossRefGoogle Scholar
  8. Arockiaraj, J., Vanaraja, P., Easwvaran, S., Singh, A., Othman, R. Y., & Bhassu, S. (2012). Gene expression and functional studies of small heat shock protein 37 (MrHSP37) from Macrobrachium rosenbergii challenged with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV). Molecular Biology Reports, 39, 6671–6682.PubMedCrossRefGoogle Scholar
  9. Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta, 1854, 291–319.PubMedCrossRefGoogle Scholar
  10. Banerjee, S., Mitra, T., Purohit, G. K., Mohanty, S., & Mohanty, B. P. (2015). Immunomodulatory effect of arsenic on cytokine and HSP gene expression in Labeo rohita fingerlings. Fish and Shellfish Immunology, 44, 43–49.PubMedCrossRefGoogle Scholar
  11. Baruah, K., Norouzitallab, P., Roberts, R. J., Sorgeloos, P., & Bossier, P. (2012). A novel heat-shock protein inducer triggers heat shock protein 70 to protect Artemia franciscana against abiotic stressors. Aquaculture, 334–337, 152–158.CrossRefGoogle Scholar
  12. Baruah, K., Norouzitallab, P., Linayati, L., Sorgeloos, P., & Bossier, P. (2014). Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70- mediated protective immunity in Artemia franciscana against pathogenic vibrios. Development and Comparative Immunology, 46, 470–479.CrossRefGoogle Scholar
  13. Baruah, K., Norouzitallab, P., Phong, H. P. P. D., Smagghe, G., & Bossier, P. (2017). Enhanced resistance against Vibrio harveyi infection by carvacrol and its association with the induction of heat shock protein 72 in gnotobiotic Artemia franciscana. Cell Stress & Chaperones, 22(3), 377–387.CrossRefGoogle Scholar
  14. Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., Nakano, K., Schulte, P. M., & Iwama, G. K. (2002). Heat shock protein genes and their functional significance in fish. Gene, 295, 173–183.PubMedCrossRefGoogle Scholar
  15. Benarroch, E. (2011). Heat shock proteins. Neurology, 76, 660–667.PubMedCrossRefGoogle Scholar
  16. Berge, T., Daugbjerg, N., Andersen, B. B., & Hansen, P. J. (2010). Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series, 416, 79–91.CrossRefGoogle Scholar
  17. Birnie-Gauvin, K., Costantini, D., Cooke, S. J., & Willmore, W. G. (2017). A comparative and evolutionary approach to oxidative stress in fish: A review. Fish and Fisheries, 18, 928–945.CrossRefGoogle Scholar
  18. Boerrigter, J. G., van de Vis, H. W., van den Bos, R., Abbink, W., Spanings, T., Zethof, J., Martinez, L. L., van Andel, W. F., Lopez-Luna, J., & Flik, G. (2014). Effects of pro-Tex® on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi). Fish Physiology and Biochemistry, 40, 1201–1212.PubMedGoogle Scholar
  19. Boone, A. N., & Vijayan, M. M. (2002). Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: Effect of heat shock and heavy metal exposure. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 132, 223–233.PubMedGoogle Scholar
  20. Breloer, M., Fleischer, B., & Bonin, A. V. (1999). In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. Journal of Immunology, 162, 3141–3147.Google Scholar
  21. Brun, N. T., Bricelj, V. M., MacRae, T. H., & Ross, N. W. (2008). Heat shock protein responses in thermally stressed bay scallops, Argopecten irradians, and sea scallops, Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology, 358, 151–162.CrossRefGoogle Scholar
  22. Camilleri, T. (2002) The prophylactic effect of Tex-OE® in angel fish (Pterophyllum scalare) against stress caused by ammonia, nitrite and chlorine. BSc Hons Thesis, University of Malta, p 124.Google Scholar
  23. Cellura, C., Toubiana, M., Parrinello, N., & Roch, P. (2006). HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Development and Comparative Immunology, 30(11), 984–997.CrossRefGoogle Scholar
  24. Ceyhun, S. B., Senturk, M., Ekinci, D., Erdogan, O., Ciltas, A., & Kocaman, M. (2010). Deltamethrin attenuates antioxidant defense system and induces the expression of heat shock protein 70 in rainbow trout. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 152, 215–223.PubMedGoogle Scholar
  25. Cha, I. S., Kwon, J., Park, S. B., Jang, H. B., Nho, S. W., Kim, Y. K., Hikima, J., Aoki, T., & Jung, T. S. (2013). Heat shock protein profiles on the protein and gene expression levels in olive flounder kidney infected with Streptococcus parauberis. Fish and Shellfish Immunology, 34, 1455–1462.PubMedCrossRefGoogle Scholar
  26. Chan, S. F., He, J. G., Chu, K. H., & Sun, C. B. (2014). The shrimp heat shock cognate 70 functions as a negative regulator in Vitellogenin gene expression. Biology of Reproduction, 91, 1–11.CrossRefGoogle Scholar
  27. Chaurasia, M. K., Palanisamy, R., Bhatt, P., Kumaresan, V., Gnanam, A. J., Pasupuleti, M., Kasi, M., Harikrishnan, R., & Arockiaraj, J. (2015). A prawn core histone 4: Derivation of N-and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiological Research, 170, 78–86.PubMedCrossRefGoogle Scholar
  28. Choi, Y. K., Jo, P. G., & Choi, C. Y. (2008). Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 147, 286–292.PubMedGoogle Scholar
  29. Chuang, K. H., Ho, S. H., & Song, Y. L. (2007). Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene, 405(1-2), 10–18.PubMedCrossRefGoogle Scholar
  30. Clegg, J. S., Jackson, S., Hoa, V. N., & Sorgeloos, P. (2000). Thermal resistance, developmental rate and heat shock proteins in Artemia franciscana, from San Francisco Bay and Southern Vietnam. Journal of Experimental Marine Biology and Ecology, 252, 85–96.PubMedCrossRefGoogle Scholar
  31. Collin, H., Meistertzheim, A. L., David, E., Moraga, D., & Boutet, I. (2010). Response of the Pacific oyster Crassostrea gigas, Thunberg 1793, to pesticide exposure under experimental conditions. Journal of Experimental Biology, 213, 4010–4017.PubMedCrossRefGoogle Scholar
  32. Crack, J. A., Mansour, M., Sun, Y., & MacRae, T. H. (2002). Functional analysis of a small heat shock/a-crystallin protein from Artemia franciscana: Oligomerization and thermotolerance. European Journal of Biochemistry, 269, 933–942.PubMedCrossRefGoogle Scholar
  33. Cui, Z., Liu, Y., Luan, W., Li, Q., Wu, D., & Wang, S. (2010). Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab (Portunus trituberculatus). Fish and Shellfish Immunology, 28(1), 56–64.PubMedCrossRefGoogle Scholar
  34. Dang, W., Hu, Y. H., Zhang, M., & Sun, L. (2010). Identification and molecular analysis of a stress-inducible HSP70 from Sciaenops ocellatus. Fish and Shellfish Immunology, 29, 600–607.PubMedCrossRefGoogle Scholar
  35. Dang, W., Zhang, M., & Sun, L. (2011). Edwardsiella tarda DnaJ is a virulenceassociated molecular chaperones with immunoprotective potential. Fish and Shellfish Immunology, 31, 182–188.PubMedCrossRefGoogle Scholar
  36. De la Vega, E., Hall, M. R., Degnan, B. M., & Wilson, K. J. (2006). Short-term hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of Gill Associated Virus (GAV). Aquaculture, 253, 82–90.CrossRefGoogle Scholar
  37. Deane, E. E., & Woo, N. Y. (2006). Impact of heavy metals and organochlorines on HSP70 and HSC70 gene expression in black sea bream fibroblasts. Aquatic Toxicology, 79, 9–15.PubMedCrossRefGoogle Scholar
  38. Deane, E. E., & Woo, N. Y. S. (2011). Advances and perspectives on the regulation and expression of piscine heat shock proteins. Reviews in Fish Biology and Fisheries, 21, 153–185.CrossRefGoogle Scholar
  39. Dhar, A. K., Manna, S. K., & Allnutt, F. C. T. (2014). Viral vaccines for farmed finfish. VirusDisease, 25(1), 1–17.PubMedCrossRefGoogle Scholar
  40. Dong, Y., & Dong, S. (2008). Induced thermotolerance and expression of heat shock protein 70 in sea cucumber Apostichopus japonicus. Fisheries Science, 74, 573–578.CrossRefGoogle Scholar
  41. Dong, Y. W., Dong, S. L., & Meng, X. L. (2008). Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicas Selenka). Aquaculture, 276, 179–186.CrossRefGoogle Scholar
  42. Duffy, L. K., Scofield, E., Rodgers, T., Patton, M., & Bowyer, R. T. (1999). Comparative baseline levels of mercury, Hsp 70 and Hsp 60 in subsistence fish from the Yukon-Kuskokwim delta region of Alaska. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 124, 181–118.CrossRefGoogle Scholar
  43. FAO (2016). The state of world fisheries and aquaculture, Food and Agriculture Oraganization of the United Nations. Rome.Google Scholar
  44. Farcy, E., Serpentini, A., Fievet, B., & Lebel, J. M. (2007). Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in haemocyte primary culture. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146, 540–550.CrossRefGoogle Scholar
  45. Fazio, G., Moné, H., Lecomte-Finiger, R., & Sasal, P. (2008). Differential gene expression analysis in European eels (Anguilla anguilla, L 1758) naturally infected by macroparasites. Journal of Parasitology, 94, 571–577.PubMedCrossRefGoogle Scholar
  46. Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response, evolutionary and ecological physiology. Annual Review Physiology, 61, 243–282.CrossRefGoogle Scholar
  47. Fernandes, M., O’Brien, T., & Lis, J. T. (1994). Structure and regulation of heat shock gene promoters. In A. Tissieres & G. Georgopoulus (Eds.), RI Morimoto (pp. 375–391). The biology of heat shock proteins and molecular chaperones: Cold Spring Harbor Press.Google Scholar
  48. Frank, S. N., Godehardt, S., Nachev, M., Trubiroha, A., Kloas, W., & Sures, B. (2013). Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphous minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts. Environmental Pollution, 180, 173–179.PubMedCrossRefGoogle Scholar
  49. Franzellitti, S., & Fabbri, E. (2005). Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochemical and Biophysical Research Communication, 336, 1157–1163.CrossRefGoogle Scholar
  50. Fu, D. K., Chen, J. H., Zhang, Y., Zhang, Y., & Yu, Z. (2011). Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge. Fish and Shellfish Immunology, 31, 118–125.PubMedCrossRefGoogle Scholar
  51. Fu, W., Zhang, F., Liao, M., Liu, M., Zheng, B., Yang, H., & Zhong, M. (2013). Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata. Fish and Shellfish Immunology, 34, 1306–1314.PubMedCrossRefGoogle Scholar
  52. Fulladosa, E., Deane, E., Ng, A. H. Y., Woo, N. Y. S., & Murat, J. C. (2006). Stress proteins induced by exposure to sublethal levels of heavy metals in sea bream (Sparus sarba) blood cells. Toxicology In Vitro, 20, 96–100.PubMedCrossRefGoogle Scholar
  53. Gao, Q., Song, L., Ni, D., Wu, L., Zhang, H., & Chang, Y. (2007). cDNA cloning and mRNA expression of heat shock protein 90 gene in the haemocytes of Zhikong scallop Chlamys farreri. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147, 704–715.CrossRefGoogle Scholar
  54. Gao, Q., Zhao, J., Song, L., Qiu, L., Yu, Y., Zhang, H., & Ni, D. (2008). Molecular cloning, characterization and expression of heat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradians. Fish and Shellfish Immunology, 24, 379–385.PubMedCrossRefGoogle Scholar
  55. Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 33–45.PubMedCrossRefGoogle Scholar
  56. Giri, S. S., Sen, S. S., Jun, J. W., Sukumaran, V., & Park, S. C. (2016). Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish and Shellfish Immunology, 54, 164–171.PubMedCrossRefGoogle Scholar
  57. Graser, R., Malner-Dragojevic, D., & Vincek, V. (1996). Cloning and characterization of a 70 kD heat shock protein cognate (HSC70) gene from the zebrafish (Danio rerio). Genetica, 98, 273–276.PubMedCrossRefGoogle Scholar
  58. Gunter, H. M., & Degnan, B. M. (2007). Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina. Development Genes and Evolution, 217, 603–612.PubMedCrossRefGoogle Scholar
  59. Gupta, S. C., Siddique, H. R., Mathur, N., Mishra, R. K., Mitra, K., Saxena, D. K., & Chowdhuri, D. K. (2007). Adverse effect of organophosphate compounds dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila Melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Toxicology, 238(1), 1–14.PubMedCrossRefGoogle Scholar
  60. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: How close and how far? Life Sciences, 86, 377–384.PubMedCrossRefGoogle Scholar
  61. Han, Y. L., Hou, C. C., Du, C., & Zhu, J. Q. (2017). Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection. Fish and Shellfish Immunology, 60, 299–310.PubMedCrossRefGoogle Scholar
  62. He, J., Wang, J., Xu, M., Wu, C., & Liu, H. (2016). The cooperative expression of heat shock protein 70 KD and 90 KD gene in juvenile Larimichthys crocea under Vibrio alginolyticus stress. Fish and Shellfish Immunology, 58, 359–369.PubMedCrossRefGoogle Scholar
  63. Healy, T. M., Tymchuk, W. E., Osborne, E. J., & Schulte, P. M. (2010). Heat shock response of killifish (Fundulus heteroclitus): Candidate gene and heterologous microarray approaches. Physiological Genomics, 41, 171–184.PubMedCrossRefGoogle Scholar
  64. Hermesz, E., Ábrahám, M., & Nemcsók, J. (2001). Identification of two hsp90 genes in carp. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 129, 397–407.PubMedGoogle Scholar
  65. Ho, L. P., Chang, C. J., Liu, H. C., Yang, H. L., & Lin, J. H. Y. (2014). Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L. Journal of Fish Diseases, 37(1), 51–62.PubMedCrossRefGoogle Scholar
  66. Hølvold, L. B., Myhr, A. I., & Dalmo, R. A. (2014). Strategies and hurdles using DNA vaccines to fish. Veterinary Research, 45, 21.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huang, P. Y., Kang, S. T., Chen, W. Y., Hsu, T. C., Lo, C. F., Liu, K. F., & Chen, L. (2008). Identification of the small heat shock protein, HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after White Spot Syndrome Virus (WSSV) infection. Fish and Shellfish Immunology, 25, 250–257.PubMedCrossRefGoogle Scholar
  68. Huang, Y., Cai, X., Zou, Z., Wang, S., Wang, G., Wang, Y., & Zhang, Z. (2014). Molecular cloning, characterization and expression analysis of three heat shock responsive genes from Haliotis diversicolor. Fish and Shellfish Immunology, 36(2), 590–599.PubMedCrossRefGoogle Scholar
  69. IPCC Report (2013) Fifth Assessment Report on Climate Change.Google Scholar
  70. Iwama, G. K., Afonso, L. O. B., Todgham, A., Ackerman, P. A., & Nakano, K. (2004). Are HSPs suitable for indicating stressed states in fish? Journal of Experimental Biology, 207, 115–119.CrossRefGoogle Scholar
  71. Jia, B., St-Hilaire, S., Singh, K., & Gardner, I. A. (2017). Biosecurity knowledge, attitudes and practices of farmers culture yellow catfish (Pelteobagrus fulvidraco) in Guangdong and Zhejiang provinces, China. Aquaculture, 471, 146–156.CrossRefGoogle Scholar
  72. Jing, J., Liu, H., Chen, H., Hu, S., Xiao, K., & Ma, X. (2013). Acute effect of copper and cadmium exposure on the expression of heat shock protein 70 in the Cyprinidae fish Tanichthys albonubes. Chemosphere, 91, 1113–1122.PubMedCrossRefGoogle Scholar
  73. Josepriya, T. A., Chien, K. H., Lin, H. Y., Huang, H. N., Wu, C. J., & Song, Y. L. (2015). Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis. Fish and Shellfish Immunology, 45, 517–527.PubMedCrossRefGoogle Scholar
  74. Ju, Z., Dunham, R. A., & Liu, Z. (2002). Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Molecular Genetics and Genomics, 268, 87–95.PubMedCrossRefGoogle Scholar
  75. Junprung, W., Supungul, P., & Tassanakajon, A. (2017). HSP70 and HSP90 are involved in shrimp Penaeus vannamei tolerance to AHPND-causing strain of Vibrio parahaemolyticus after non-lethal heat shock. Fish and Shellfish Immunology, 60, 237–246.PubMedCrossRefGoogle Scholar
  76. Kim, M., Ahn, I. Y., Kim, H., Cheon, J., & Park, H. (2009). Molecular characterization and induction of heat shock protein 90 in the Antarctic bivalve Laternula elliptica. Cell Stress & Chaperones, 14, 363–370.CrossRefGoogle Scholar
  77. Kondo, H., & Watabe, S. (2004). Temperature-dependent enhancement of cell proliferation and mRNA expression for type I collagen and HSP70 in primary cultured goldfish cells. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 138(2), 221–228.CrossRefGoogle Scholar
  78. Kondo, H., Harano, R., Nakaya, M., & Watabe, S. (2004). Characterization of goldfish heat shock protein-30 induced upon severe heat shock in cultured cells. Cell Stress & Chaperones, 9, 350–358.CrossRefGoogle Scholar
  79. Lanneau, D., Brunet, M., Frisan, E., Solary, E., Fontenay, M., & Garrido, C. (2008). Heat shock proteins: Essential proteins for apoptosis regulation. Journal of Cellular and Molecular Medicine, 12(3), 743–761.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li, F., Luan, W., Zhang, C., Zhang, J., Wang, B., Xie, Y., Li, S., & Xiang, J. (2009). Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress & Chaperones, 14(2), 161–172.CrossRefGoogle Scholar
  81. Li, J. T., Han, J. Y., Chen, P., Chang, Z. Q., He, Y. Y., Liu, P., Wang, Q. Y., & Li, J. (2012). Cloning of a heat shock protein 90 (HSP90) gene and expression analysis in the ridgetail white prawn Exopalaemon carinicauda. Fish and Shellfish Immunology, 32, 1191–1197.PubMedCrossRefGoogle Scholar
  82. Li, H. J., Liu, S. X., He, C. B., Gao, X. G., & Yuan, X. T. (2013). Identification of a small HSP gene from hard clam Meretrix meretrix and its potential as an environmental stress biomarker. Aquatic Biology, 18(3), 243–252.CrossRefGoogle Scholar
  83. Li, L., Zhai, S., Wang, L., Si, S., Wu, H., & Chang, Z. (2014). Hsp60 in caudal fin regeneration from Paramisgurnus dabryanus: Molecular cloning and expression characterization. Fish and Shellfish Immunology, 36(2), 401–408.PubMedCrossRefGoogle Scholar
  84. Li, J., Zhang, H., Zhang, X., Yang, S., Yan, T., & Song, Z. (2015). Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant’s schizothoracin (Schizothorax prenanti). Fish Physiology Biochemistry, 41, 573–585.PubMedCrossRefGoogle Scholar
  85. Li, J., Zhang, Y., Liu, Y., Xiao, S., & Yu, Z. (2016a). Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges. Fish and Shellfish Immunology, 48, 239–243.PubMedCrossRefGoogle Scholar
  86. Li, P., Jiang, X. F., Guo, W. B., Yan, J., & Zhou, K. Y. (2016b). Expression patterns of two heat-shock cognate 70 genes during immune responses and larval development of the Chinese mitten crab Eriocheir sinensis, Genetics and Molecular Research., 15(3.) gmr.15036319.Google Scholar
  87. Lindquist, S., & Craig, E. A. (1988). The heat shock proteins. Annual Reviews in Genetics, 22, 631–677.CrossRefGoogle Scholar
  88. Liu, J., Yang, W. J., Zhu, X. J., Karouna-Renier, N. K., & Rao, R. K. (2004). Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress and Chaperones, 9, 313–323.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu, S., Wang, X., Sun, F., Zhang, J., Feng, J., Liu, H., Rajendran, K. V., Sun, L., Zhang, Y., Jiang, Y., Peatman, E., Kaltenboeck, L., Kucuktas, H., & Liu, Z. (2013). RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiological Genomics, 45(12), 462–476.PubMedCrossRefGoogle Scholar
  90. Lund, S. G., & Tufts, B. L. (2003). The physiological effects of heat stress and the role of heat shock proteins in rainbow trout (Oncorhynchus mykiss) red blood cells. Fish Physiology and Biochemistry, 29(1), 1–12.CrossRefGoogle Scholar
  91. Lund, S. G., Caissie, D., Cunjak, R. A., Vijayan, M. M., & Tufts, B. L. (2002). The effects of environmental heat stress on heat-shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1553–1562.CrossRefGoogle Scholar
  92. Mahanty, A., Purohit, G. K., Yadav, R. P., Mohanty, S., & Mohanty, B. P. (2017). hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring runoff aquatic ecosystem. Fish Physiology and Biochemistry, 43(1), 89–102.PubMedCrossRefGoogle Scholar
  93. Mansour, S. A., & Sidky, M. M. (2002). Ecotoxicological studies: 3. Heavy metals contaminating water and fish from Fayoum governorate, Egypt. Food Chemistry, 78, 15–22.CrossRefGoogle Scholar
  94. Mao, L., Bryantsev, A. L., Chechenova, M. B., & Shelden, E. A. (2005). Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio. Experimental Cell Research, 306, 230–241.PubMedCrossRefGoogle Scholar
  95. Marcogliese, D. J., & Giamberini, L. (2013). Parasites and ecotoxicology: Fish and amphibians. In J.-F. Férard & C. Blaise (Eds.), Encyclopedia of aquatic ecotoxicology (pp. 815–826). Dordrecht: Spinger.CrossRefGoogle Scholar
  96. Marvin, M. O., Rourke, D., Kurihara, T., Juliano, C. E., Harrison, K. L., & Hutson, L. D. (2008). Developmental expression patterns of the zebrafish small heat shock proteins. Developmental Dynamics, 237, 454–463.PubMedCrossRefGoogle Scholar
  97. Maurizi, M. R., & Xia, D. (2004). Protein binding and disruption by Clp/Hsp100 chaperones. Structure, 12, 175–183.PubMedCrossRefGoogle Scholar
  98. Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37, 1362–1375.PubMedCrossRefGoogle Scholar
  99. Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., & Körtzinger, A. (2013). Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology, 160(8), 1875–1888.CrossRefGoogle Scholar
  100. Meng, X. L., Dong, Y. W., & Dong, S. L. (2011). Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression. Aquaculture, 316, 88–92.CrossRefGoogle Scholar
  101. Meng, X. L., Liu, P., Li, J., Gao, B. Q., & Chen, P. (2014). Physiological responses of swimming crab Portunus trituberculatus under cold acclimation: antioxidant defense and heat shock proteins. Aquaculture, 434, 11–17.CrossRefGoogle Scholar
  102. Ming, J., Xie, J., Xu, P., Liu, W., Ge, X., Liu, B., He, Y., Cheng, Y., Zhou, Q., & Pan, L. (2010). Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala). Fish and Shellfish Immunology, 28, 407–418.PubMedCrossRefGoogle Scholar
  103. Mohindra, V., Tripathi, R. K., Yadav, P., Singh, R. K., & Lal, K. K. (2015). Hypoxia induced altered expression of heat shock protein genes (Hsc71, Hsp90α and Hsp10) in Indian catfish, Clarias batrachus (Linnaeus, 1758) under oxidative stress. Molecular Biology Reports, 42(7), 1197–1209.PubMedCrossRefGoogle Scholar
  104. Mu, W., Wen, H., Li, J., & He, F. (2013). Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli). Fish and Shellfish Immunology, 35, 1111–1121.PubMedCrossRefGoogle Scholar
  105. Mutwakil, M. H., Reader, J. P., Holdich, D. M., Smithurst, P. R., Candido, E. P. M., Jones, D., Stringham, E. G., & de Pomerai, D. I. (1997). Use of stress-inducible transgenic nematodes as biomarkers of heavy-metal pollution in water samples from english river system. Archives of Environmental Contamination and Toxicology, 32(2), 146–153.PubMedCrossRefGoogle Scholar
  106. Nazir, A., Mukhopadhyay, I., Saxena, D. K., & Chowdhuri, D. K. (2006). Hsp70 expression in Drosophila melanogaster, toxicological perspective. In A. S. Sreedhar & U. K. Srinivas (Eds.), Stress response: A molecular biology approach (pp. 207–226). Trivandrum: Research Singpost Press.Google Scholar
  107. Ni, M., Wen, H., Li, J., Chi, M., Ren, Y., Son, Z., & Ding, H. (2014). Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): Cloning, characterization and expression pattern to crowding and hypoxia stress. Fish Physiology and Biochemistry, 40, 1801–1816.PubMedCrossRefGoogle Scholar
  108. Norouzitallab, P., Baruah, K., Muthappa, D. M., & Bossier, P. (2015). Non-lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbellii. Fish and Shellfish Immunology, 42(2), 395–399.PubMedCrossRefGoogle Scholar
  109. Norris, C. E., Brown, M. A., Hickey, E., Weber, L. A., & Hightower, L. E. (1997). Low-molecular weight heat shock proteins in a desert fish (Poeciliopsis lucida): Homologs of human Hsp27 and Xenopus Hsp30. Molecular Biology and Evolution, 14, 115–129.CrossRefGoogle Scholar
  110. Ojima, N. (2007). Rainbow trout hspb1 (hsp27): Identification of two mRNA splice variants that show predominant expression in muscle tissues. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148, 277–285.CrossRefGoogle Scholar
  111. Ojima, N., & Oohara, I. (2008). Isolation and characterization of a genomic fosmid clone containing hspb1 (hsp27) from the Pacific bluefin tuna Thunnus orientalis. Marine Genomics, 1, 87–93.PubMedCrossRefGoogle Scholar
  112. Östling, P., Bjork, J. K., Roos-Mattjus, P., Mezger, V., & Sistonen, L. (2007). Heat shock factor2 (HSF2) contributes to inducible expression of Hsps through interplay with HSF1. Journal of Biological Chemistry, 282, 7077–7086.PubMedCrossRefGoogle Scholar
  113. Padmini, E., & Rani, M. U. (2009). Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries. Science of the Total Environment, 407(15), 4533–4541.PubMedCrossRefGoogle Scholar
  114. Park, K., & Kwak, I. (2013). Expression of stress response HSP70 gene in Asian paddle crabs, Charybdis japonica, exposure to endocrine disrupting chemicals, bisphenol a (BPA) and 4-nonylphenol (NP). Ocean Science Journal, 48(2), 207–214.CrossRefGoogle Scholar
  115. Pearl, L. H., & Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry, 75, 271–294.PubMedCrossRefGoogle Scholar
  116. Peng, G., Zhao, W., Shi, Z., Chen, H., Liu, Y., Wei, J., & Gao, F. (2015). Cloning HSP70 and HSP90 genes of kaluga (Huso dauricus) and the effects of temperature and salinity stress on their gene expression. Cell Stress and Chaperones, 21(2), 349–359.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Perelo, L. W. (2010). Review: In situ and bioremediation of organic pollutants in aquatic sediments. Journal of Hazardous Materials, 177, 81–89.PubMedCrossRefGoogle Scholar
  118. Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D., Jaris, H. K., LaVigne, M., Lenz, E. A., Russell, A. D., & Young, M. K. (2013). Evolutionary change during experimental ocean acidification (Vol. 110, pp. 6937–6942). Proceedings of the National Academy of Sciences.Google Scholar
  119. Pirkkala, L., Nykanen, P., & Sistonen, F. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB Journal, 15, 1118–1131.PubMedCrossRefGoogle Scholar
  120. Plant, K. P., LaPatra, S. E., & Cain, K. D. (2009). Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. Journal of Fish Diseases, 32, 521–534.PubMedCrossRefGoogle Scholar
  121. Pockley, A. G. (2003). Heat shock proteins as regulators of the immune response. Lancet, 362, 469–476.PubMedCrossRefGoogle Scholar
  122. Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine (Maywood), 228, 111–133.CrossRefGoogle Scholar
  123. Pu, Y., Zhu, J., Wang, H., Zhang, X., Hao, J., Wu, Y., Geng, Y., Wang, K., Li, Z., Zhou, J., & Chen, D. (2016). Molecular characterization and expression analysis of Hsp90 in Schizothorax prenanti. Cell Stress & Chaperones, 21(6), 983–991.CrossRefGoogle Scholar
  124. Qi, J., Liu, X., Liu, J., Yu, H., Wang, W., Wang, Z., & Zhang, Q. (2014). Molecular characterization of heat shock protein 70 (HSP 70) promoter in Japanese flounder (Paralichthys olivaceus), and the association of Pohsp70 SNPs with heat-resistant trait. Fish and Shellfish Immunology, 39, 503–511.PubMedCrossRefGoogle Scholar
  125. Qian, Z., Liu, X., Wang, L., Wang, X., Li, Y., Xiang, J., & Wang, P. (2012). Gene expression profiles of four heat shock proteins in response to different acute stresses in shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 156, 211–220.PubMedGoogle Scholar
  126. Queitsch, C., Hong, S. W., Vierling, E., & Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell, 12, 479–492.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Quintana, F. J., & Cohen, I. R. (2011). The HSP60 immune system network. Trends in Immunology, 32, 89–95.PubMedCrossRefGoogle Scholar
  128. Rajeshkumar, S., Mini, J., & Munuswamy, N. (2013). Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of milkfish (Chanos chanos) of Kaattuppall Island, Chennai, India. Ecotoxicology and Environmental Safety, 98, 8–18.PubMedCrossRefGoogle Scholar
  129. Rallu, M., Loones, M., Lallemand, Y., Morimoto, R., Morange, M., & Mezger, V. (1997). Function and regulation of heat shock factor 2 during mouse embryogenesis. Proceedings of the National Academy of Sciences of the United States, 94, 2392–2397.CrossRefGoogle Scholar
  130. Ravaux, J., Toullec, J. Y., Léger, N., Lopez, P., Gaill, F., & Shillito, B. (2007). First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata: Characterization and sequence analysis. Gene, 386, 162–172.PubMedCrossRefGoogle Scholar
  131. Rendell, J. L., Fowler, S., Cockshutt, A., & Currie, S. (2006). Development dependent differences in intracellular localization of stress proteins (HSPs) in rainbow trout, Oncorhynchus mykiss, following heat shock. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(2), 238–252.Google Scholar
  132. Rhee, J. S., Raisuddin, S., Lee, K. W., Seo, J. S., Ki, J. S., & Kim, C. (2009). Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 149, 104–112.PubMedGoogle Scholar
  133. Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the verge of death. Molecular Cell, 40, 253–266.PubMedCrossRefGoogle Scholar
  134. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 13, 571–573.CrossRefGoogle Scholar
  135. Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33, 789–801.PubMedCrossRefGoogle Scholar
  136. Rupik, W., Jasik, K., Bembenek, J., & Widłak, W. (2011). The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 159(4), 349–366.CrossRefGoogle Scholar
  137. Saluja, A., & Dudeja, V. (2008). Heat shock proteins in pancreatic diseases. Journal of Gastroenterology and Hepatology, 23(1), 42–45.CrossRefGoogle Scholar
  138. Sanders, B. M. (1993). Stress proteins in aquatic organisms: An environmental perspective. Critical Reviews in Toxicology, 23, 49–75.PubMedCrossRefGoogle Scholar
  139. Sanders, B. M., Nguyen, J., Martin, L. S., Howe, S. R., & Coventry, S. (1995). Induction and subcellular localization of two major stress proteins in response to copper in the fathead minnow Pimephales promelas. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 112, 335–343.Google Scholar
  140. Sarge, K. D., Park-Sarge, O. K., Kirby, J. D., Mayo, K. E., & Morimoto, R. I. (1994). Expression of heat shock factor 2 in mouse testis, potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biology of Reproduction, 50, 1334–1343.PubMedCrossRefGoogle Scholar
  141. Satyal, S. H., Chen, D., Fox, S. G., Kramer, J. M., & Morimoto, R. I. (1998). Negative regulation of the heat shock transcriptional response by HSBP1. Genes and Development, 12, 1962–1974.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Scharf, K. D., Hohfeld, I., & Nover, L. (1998). Heat stress response and heat stress transcription factors. Journal of Biosciences, 23, 313–329.CrossRefGoogle Scholar
  143. Scheil, V., Zurn, A., Kohler, H. R., & Triebskorn, R. (2009). Embryo development, stress protein (HSP70) responses, and histopathology in zebrafish (Danio rerio) following exposure to nickel chloride, chlorpyrifos, and binary mixtures of them. Environmental Toxicology, 25, 83–93.Google Scholar
  144. Schirmer, E. C., Glover, J. R., Singer, M. A., & Lindquist, S. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences, 21, 289–296.PubMedCrossRefGoogle Scholar
  145. Scholz, T. (1999). Parasites in cultured and feral fish. Veterinary Parasitology, 84, 317–335.PubMedCrossRefGoogle Scholar
  146. Segal, B. H., Wang, X. Y., & Dennis, C. G. (2006). Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discovery Today, 11, 534–540.PubMedCrossRefGoogle Scholar
  147. Selvakumar, S., & Geraldine, P. (2005). Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii: Acclimation-influenced variations in the induction temperatures for Hsp70. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 140, 209–215.CrossRefGoogle Scholar
  148. Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D., & Nudler, E. (2006). RNA-mediated response to heat shock in mammalian cells. Nature, 440, 556–560.PubMedCrossRefGoogle Scholar
  149. Shi, G. C., Dong, X. H., Chen, G., Tan, B. P., Yang, Q. H., Chi, S. Y., & Liu, H. Y. (2015a). Physiological responses and HSP70 mRNA expression of GIFT strain of Nile tilapia (Oreochromis niloticus) under cold stress. Aquaculture Research, 46, 658–668.CrossRefGoogle Scholar
  150. Shi, J., Fu, M., Zhao, C., Zhou, F., Yang, Q., & Qiu, L. (2015b). Characterization and function analysis of Hsp60 and Hsp10 under different acute stresses in black tiger shrimp Penaeus monodon. Cell Stress and Chaperones, 21(2), 295–312.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Siddique, H. R., Mitra, K., Bajpai, V. K. R., Ram, K., Saxena, D. K., & Chowdhuri, D. K. (2009). Hazardous effect of tannery solid waste leachates on development and reproduction in Drosophila Melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Ecotoxicology and Environmental Safety, 72(6), 1652–1662.PubMedCrossRefGoogle Scholar
  152. Sikora, A., & Grzesiuk, E. (2007). Heat shock response in gastrointestinal tract. Journal of Physiology and Pharmacology, 58(3), 43–62.PubMedGoogle Scholar
  153. Skoula, M., Gotsiou, P., Naxakis, G., & Johnson, C. B. (1999). A chemosystematic investigation on the mono- and sesquiterpenoids in the genus Origanum (Labiatae). Phytochemistry, 52, 649–657.CrossRefGoogle Scholar
  154. Srivastava, P. K. (2002). Roles of heat shock proteins in innate and adaptive immunity. Nature Reviews in Immunology, 2, 185–194.PubMedCrossRefGoogle Scholar
  155. Subotić, S., Spasić, S., Višnjić-Jeftić, Ž., Hegediš, A., Krpo-Ćetković, J., Mićković, B., Skorić, S., & Lenhardt, M. (2013). Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicology and Environmental Safety, 98, 196–202.PubMedCrossRefGoogle Scholar
  156. Sun, S., Xuan, F., Fu, H., Ge, X., Zhu, J., Qiao, H., Jin, S., & Zhang, Y. (2016). Comparative proteomic study of the response to hypoxia in the muscle of oriental river prawn (Macrobrachium nipponense). Journal of Proteomics, 138, 115–123.PubMedCrossRefGoogle Scholar
  157. Sung, Y. Y., Van Damme, E. J. M., Sorgeloos, P., & Bossier, P. (2007). Non-lethal heat shock protects gnotobiotic Artemia franciscana larvae against virulent Vibrios. Fish and Shellfish. Immunology, 22, 318–326.Google Scholar
  158. Sung, Y. Y., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2011). Stress response for disease control in aquaculture. Reviews in Aquaculture, 3, 120–137.CrossRefGoogle Scholar
  159. Sung, Y. Y., Roberts, R. J., & Bossier, P. (2012). Enhancement of Hsp70 synthesis protects common carp Cyprinus carpio L. against lethal ammonia toxicity. Journal of Fish Diseases, 35, 563–568.PubMedCrossRefGoogle Scholar
  160. Sung, Y. Y., Liew, H. J., Bolong, A. M. A., Effendy, A. W. M., & MacRae, T. H. (2014). The induction of Hsp70 synthesis by nonlethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn). Aquaculture Research, 45, 1706–1712.CrossRefGoogle Scholar
  161. Thinh, D. D., Rasid, M. H. F. A., Deris, Z. M., Shazili, N. A. M., De Boeck, G., & Wong, L. L. (2016). Putative roles for metallothionein and HSP70 genes in relation with heavy metal accumulation and parasitic cymothoid in the fish Nemipterus furcosus. Archives of Environmental Contamination and Toxicology, 71(4), 530–540.PubMedCrossRefGoogle Scholar
  162. Thomas, P., & Rahman, M. S. (2009). Biomarkers of hypoxia exposure and reproductive function in Atlantic croaker: A review with some preliminary findings from the northern Gulf of Mexico hypoxic zone. Journal of Experimental Marine Biology and Ecology, 381, S38–S50.CrossRefGoogle Scholar
  163. Triebskorn, R., Adam, S., Casper, H., Honnen, W., Pawert, M., Schramm, M., Schwaiger, J., & Köhler, H. (2002). Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms. Ecotoxicology, 11, 451–465.PubMedCrossRefGoogle Scholar
  164. Van der Vies, S. M., Gatenby, A. A., Vitanen, P. V., & Lorimer, G. H. (1993). Molecular chaperones and their role in protein assembly. In J. L. Cleland (Ed.), Protein folding in vivo and in vitro (pp. 72–83). Washington DC: American Chemical Society.CrossRefGoogle Scholar
  165. Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States, 105, 15452–15457.CrossRefGoogle Scholar
  166. Voellmy, R. (2004). On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress and Chaperones, 9, 122–133.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wan, Q., Whang, I., & Lee, J. (2012). Molecular and functional characterization of HdHSP20: A biomarker of environmental stresses in disk abalone Haliotis discus discus. Fish and Shellfish Immunology, 33(1), 48–59.PubMedCrossRefGoogle Scholar
  168. Wang, J. S., Wei, Y. H., Li, X. M., Cao, H., Xu, M. Q., & Dai, J. Y. (2007). The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 145, 350–362.PubMedGoogle Scholar
  169. Wang, Z., Wu, Z., Jian, J., & Lu, Y. (2009). Cloning and expression of heat shock protein 70 gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850) responding to bacterial challenge. Fish and Shellfish Immunology, 26(4), 639–645.PubMedCrossRefGoogle Scholar
  170. Wang, Y., Li, J., Liu, P., Li, J. T., Zhang, Z., Chang, Z. Q., He, Y. Y., & Liu, D. Y. (2011). The responsive expression of a caspase gene in Chinese shrimp Fenneropenaeus chinensis against pH stress. Aquaculture Research, 42, 1214–1230.CrossRefGoogle Scholar
  171. Wang, T. T., Wang, N., Liao, X. L., Meng, L., Liu, Y., & Chen, S. L. (2013a). Cloning, molecular characterization and expression analysis of heat shock cognate 70 (Hsc70) cDNA from turbot (Scophthalmus maximus). Fish Physiology and Biochemistry, 39, 1377–1386.PubMedCrossRefGoogle Scholar
  172. Wang, X. Y., Zhou, Z. C., Yang, A. F., Dong, Y., Chen, Z., Guan, X. Y., Jiang, B., & Wang, B. (2013b). Molecular characterization and expression analysis of heat shock cognate 70 after heat stress and lipopolysaccharide challenge in sea cucumber (Apostichopus japonicus). Biochemical Genetics, 51, 443–457.PubMedCrossRefGoogle Scholar
  173. Wang, P., Xu, P., Zhou, L., Zeng, S., & Li, G. (2017). Molecular cloning, characterization, and expression analysis of HSP60 in Mandarin fish Siniperca chuatsi. The Israeli Journal of Aquaculture, 69, 1–13.Google Scholar
  174. Wanilada, R., Rungnapa, L., & Pikul, J. (2010). Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Developmental and Comparative Immunology, 10, 1082–1089.Google Scholar
  175. Waters, E. R., & Rioflorido, I. (2007). Evolutionary analysis of the small heat shock proteins in five complete algal genomes. Journal of Molecular Evolution, 65(2), 162–174.PubMedCrossRefGoogle Scholar
  176. Weber, T. E., & Bosworth, B. G. (2005). Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture, 246, 483–492.CrossRefGoogle Scholar
  177. Weber-Ban, E. U., Reid, B. G., Miranker, A. D., & Horwich, A. L. (1999). Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature, 401(6748), 90–93.PubMedCrossRefGoogle Scholar
  178. Wedler, F. C. (1987). Determinants of molecular heat stability. In K. J. Henle (Ed.), Thermotolerance, Mechanisms of Heat Resistance (Vol. II, pp. 132–148). Baton Rouge: CRC Press.Google Scholar
  179. Wei, T., Gao, Y., Wang, R., & Xu, T. (2013). A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. Fish and Shellfish Immunology, 35, 429–437.PubMedCrossRefGoogle Scholar
  180. Werner, I., Linares-Casenave, J., Van Eenennaam, J. P., & Doroshov, S. I. (2007). The effect of temperature stress on development and heat shock protein expression in larval green sturgeon (Acipenser medirostris). Environmental Biology of Fishes, 79, 191–200.CrossRefGoogle Scholar
  181. Wickner, S., Maurizi, M. R., & Gottesman, S. (1999). Posttranslational quality control: Folding, refolding, and degrading proteins. Science, 286, 1888–1893.PubMedCrossRefGoogle Scholar
  182. Wilhelm, V., Miquel, A., Burzio, L. O., Rosemblatt, M., Engel, E., & Valenzuela, P. D. T. (2006). A vaccine against the salmonid pathogen Piscirickettsi salmonis based on recombinant proteins. Vaccine, 24, 5083–5091.PubMedCrossRefGoogle Scholar
  183. Williams, J. H., Farag, A. M., Stansbury, M. A., Young, P. A., Bergman, H. L., & Petersen, N. S. (1996). Accumulation of HSP70 in juvenile and adult rainbow trout gill exposed to metal contaminated water and/or diet. Environmental Toxicology and Chemistry, 15(8), 1324–1328.CrossRefGoogle Scholar
  184. Wu, R., Sun, L., Lei, M., & Xie, S. T. (2008). Molecular identification and expression of heat shock cognate 70 (HSC70) in the Pacific white shrimp Litopenaeus vannamei. Molecular Biology, 42, 265–274.Google Scholar
  185. Wu, C., Zhang, W., Mai, K., Xu, W., & Zhong, X. (2011). Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 154, 1–6.PubMedGoogle Scholar
  186. Wu, C. X., Zhao, F. Y., Zhang, Y., Zhu, Y. J., Ma, M. S., Mao, H. L., & Hu, C. Y. (2012). Overexpression of Hsp90 fomrom grass carp (Ctenopharyngodon idella) increases thermal protection against heat stress. Fish and Shellfish Immunology, 33, 42–47.PubMedCrossRefGoogle Scholar
  187. Wu, S. M., Liu, J. H., Shu, L. H., & Chen, C. H. (2015). Anti-oxidative responses of zebrafish (Danio rerio) gill, liver and brain tissues upon acute cold shock. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 187, 202–213.CrossRefGoogle Scholar
  188. Xie, Y., Song, L., Weng, Z., Liu, S., & Liu, Z. (2015). Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish and Shellfish Immunology, 44, 642–651.PubMedCrossRefGoogle Scholar
  189. Xing, H., Liu, T., Zhang, Z., Wang, X., & Xu, S. (2015). Acute and subchronic toxic effects of atrazine and chlorpyrifos on common carp (Cyprinus carpio L.): Immunotoxicity assessments. Fish and Shellfish Immunology, 45(2), 327–333.PubMedCrossRefGoogle Scholar
  190. Xiu, Y., Feng, J., Lu, W., Liu, D., Wu, T., Zhu, H., Liu, P., Li, W., Ren, Q., Gu, W., Meng, Q., & Wang, W. (2014). Identification of a novel cognate cytosolic Hsp70 gene(MnHsc70-2)from oriental river prawn Macrobrachium nipponense and comparison of its expressions with the first cognate Hsc70(MnHsc70-1)under different stresses. Cell and Stress Chaperones, 19(6), 949–961.CrossRefGoogle Scholar
  191. Xu, Q., & Qin, Y. (2012). Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell and Stress Chaperones, 17, 589–601.CrossRefGoogle Scholar
  192. Xu, X. Y., Shen, Y. B., Fu, J. J., Liu, F., Guo, S. Z., Yang, X. M., & Li, J. L. (2011). Molecular cloning, characterization and expression patterns of hsp60 in the grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 31, 864–870.PubMedCrossRefGoogle Scholar
  193. Yamashita, M., Yabu, T., & Ojima, N. (2010). Stress protein HSP70 in fish. Aqua-BioScience Monographs, 3, 111–141.CrossRefGoogle Scholar
  194. Yang, Q. L., Yao, C. L., & Wang, Z. Y. (2012). Acute temperature and cadmium stress response characterization of small heat shock protein 27 in large yellow croaker, Larimichthys crocea. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 155, 190–197.PubMedGoogle Scholar
  195. Yang, Y., Ye, H., Huang, H., Li, S., Zeng, X., Gong, J., & Huang, X. (2013). Characterization and expression of SpHsp60 in hemocytes after challenge to bacterial, osmotic and thermal stress from the mud crab Scylla paramamosain. Fish and Shellfish Immunology, 35, 1185–1191.PubMedCrossRefGoogle Scholar
  196. Yang, Y., Yu, H., Li, H., Wang, A., & Yu, H. Y. (2016). Effect of high temperature on immune response of grass carp (Ctenopharyngodon idellus) by transcriptome analysis. Fish and Shellfish Immunology, 58, 89–95.PubMedCrossRefGoogle Scholar
  197. Yue, X., Liu, B., Sun, L., & Tang, B. (2011). Cloning and characterization of a hsp70 gene from Asiatic hard clam Meretrix meretrix which is involved in the immune response against bacterial infection. Fish and Shellfish Immunology, 30, 791–799.PubMedCrossRefGoogle Scholar
  198. Zafarullah, M., Wisniewski, J., Shworak, N. W., Schieman, S., Misra, S., & Gedamu, L. (1992). Molecular cloning and characterization of a constitutively expressed heat-shock cognate hsc 71 gene from rainbow trout. European Journal of Biochemistry, 204, 893–900.PubMedCrossRefGoogle Scholar
  199. Zhang, K., Ezemaduka, A. N., Wang, Z., Hu, H., Shi, X., Liu, C., Lu, X., Fu, X., Chang, Z., & Yin, C. C. (2015). A novel mechanism for small heat shock proteins to function as molecular chaperones. Scientific Reports, 5, 8811.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zhao, H., Yang, H., Zhao, H., Chen, M., & Wang, T. (2011). The molecular characterization and expression of heat shock protein 90 (Hsp90) and 26 (Hsp26) cDNAs in sea cucumber (Apostichopus japonicus). Cell Stress and Chaperones, 16, 481–493.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Zhao, X., Yu, H., Kong, L., & Li, Q. (2012). Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS One, 7, e46244.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Zugel, U., & Kaufman, S. H. E. (1999). The role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clinical Microbiology Reviews, 12, 19–39.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Tropical Aquaculture (AKUATROP), Universiti Malaysia TerengganuTerengganuMalaysia
  2. 2.Department of BiotechnologySangmyung UniversitySeoulRepublic of Korea
  3. 3.Institute of Marine Environment and Resources, Vietnam Academy of Science and TechnologyHaiphongVietnam

Personalised recommendations