Antioxidant Systems and Vitagenes in Poultry Biology: Heat Shock Proteins

  • Peter F. Surai
  • Ivan I. Kochish
Part of the Heat Shock Proteins book series (HESP, volume 12)


Commercial poultry production is associated with various stresses decreasing productive and reproductive performance of layers. A growing body of evidence indicates that most of stresses in poultry production at the cellular level are associated with oxidative stress due to excess of free radical production or inadequate antioxidant protection. Recently, a concept of the cellular antioxidant defence has been revised with a special attention paid to cell signalling. Antioxidant systems of the living cell is based on three major levels of defence and include several options and vitagene activation in stress conditions is considered as a fundamental adaptive mechanism. The vitagene family includes various genes responsible for synthesis of protective molecules such as thioredoxins, SOD, sirtuins and heat shock proteins (HSP). Indeed, HSP70, HSP90 and HSP32 (heme oxygenase) are among important elements of the antioxidant system network. However, by the time of writing no comprehensive review on the roles and effects of HSP in poultry biology has appeared. Therefore, the aim of this review is a critical analysis of the role of HSP in poultry biology with a specific emphasis to their functions as an essential part of the vitagene network. From the analysis of the recent data related to HSP in poultry physiology and adaptation to stresses it is possible to conclude that: a) HSP as important vitagenes are main driving force in cell/body adaptation to various stress conditions. Indeed, in stress conditions synthesis of most cellular proteins decreases while HSP expression is usually significantly increased; b) HSP as cellular chaperones are responsible for proteostasis and involved in protein quality control in the cell to prevent misfolding or to facilitate degradation, making sure that proteins are in optimal structure for their biological activities; c) there are tissue-specific differences in HSP expression which also depends on the strength of such stress-factors as heat, heavy metals, mycotoxins and other toxicants; d) HSP70, HSP90 and HSP32 are shown to be protective in heat stress, toxicity stress as well as in other oxidative-stress related conditions in poultry production; e) molecular mechanisms of HSP participation in acquisition of thermotolerance need further detailed investigation; f) there are complex interactions inside the antioxidant network of the cell/body to ensure an effective maintenance of homeostasis in stress conditions. Indeed, in many cases nutritional antioxidants (vitamin E, ascorbic acid, selenium) in the feed can decrease oxidative stress and as a result HSP expression could be decreased as well; g) regulating effects of various phytochemicals on HSP need further investigation; h) protective effects of HSP in immunity in stress conditions await practical applications in poultry production; i) nutritional means of additional HSP upregulation in stress conditions of poultry production and physiological and commercial consequences await investigation; j) vitagene upregulation in stress conditions is emerging as an effective means for stress management.


Antioxidant system Chicken HSP Poultry Stress Vitagenes 



Peter F. Surai and Ivan I. Kochish are supported by a grant of the Government of Russian Federation (Contract No. 14.W03.31.0013).


  1. Abdul, H. M., Calabrese, V., Calvani, M., & Butterfield, D. A. (2006). Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Journal of Neuroscience Research, 84, 398–408.PubMedCrossRefGoogle Scholar
  2. Aggarwal, A., Ashutosh Chandra, G., & Singh, A. K. (2013). Heat shock protein 70, oxidative stress, and antioxidant status in periparturient crossbred cows supplemented with α-tocopherol acetate. Tropical Animal Health and Production, 45, 239–245.PubMedCrossRefGoogle Scholar
  3. Alirezaei, M., Khoshdel, Z., Dezfoulian, O., Rashidipour, M., & Taghadosi, V. (2015). Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. The Journal of Physiological Sciences, 65, 243–252.PubMedCrossRefGoogle Scholar
  4. Al-Zghoul, M. B., Ismail, Z. B., Dalab, A. E., et al. (2015). Hsp90, Hsp60 and HSF-1 genes expression in muscle, heart and brain of thermally manipulated broiler chicken. Research in Veterinary Science, 99, 105–111.PubMedCrossRefGoogle Scholar
  5. Andrés, D., Alvarez, A. M., Díez-Fernández, C., Zaragoza, A., & Cascales, M. (2000). HSP70 induction by cyclosporine A in cultured rat hepatocytes: effect of vitamin E succinate. Journal of Hepatology, 33, 570–579.PubMedCrossRefGoogle Scholar
  6. Atkinson, B. G., Dean, R. L., & Blaker, T. W. (1986). Heat shock induced changes in the geneexpression of terminally differentiating avian red blood cells. Canadian Journal of Genetics and Cytology, 28, 1053–1063.CrossRefGoogle Scholar
  7. Aujame, L., & Firko, H. (1988). The major inducible heat shock protein hsp68 is not required for acquisition of thermal resistance in mouse plasmacytoma cell lines. Journal of Molecular Cell Biology, 8, 5486–5494.CrossRefGoogle Scholar
  8. Bag, J. (1983a). Regulation of heat-shock protein synthesis in chicken muscle culture during recovery from heat shock. European Journal of Biochemistry, 135, 373–378.PubMedCrossRefGoogle Scholar
  9. Bag, J. (1983b). Free messenger ribonucleoprotein complexes of chicken primary muscle cells following modification of protein synthesis by heat-shock treatment. European Journal of Biochemistry, 135, 187–196.PubMedCrossRefGoogle Scholar
  10. Bagatell, R., Paine-Murrieta, G. D., Taylor, C. W., et al. (2000). Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clinical Cancer Research, 6, 3312–3318.PubMedGoogle Scholar
  11. Banerji, S. S., Theodorakis, N. G., & Morimoto, R. I. (1984). Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Journal of Molecular Cell Biology, 4, 2437–2448.CrossRefGoogle Scholar
  12. Banerji, S. S., Laing, K., & Morimoto, R. I. (1987). Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP70 during avian embryogenesis. Genes, 1, 946–953.CrossRefGoogle Scholar
  13. Barbagallo, I., Galvano, F., Frigiola, A., et al. (2013). Potential therapeutic effects of natural heme oxygenase-1 inducers in cardiovascular diseases. Antioxid Redox Signal, 18, 507–521.PubMedCrossRefGoogle Scholar
  14. Barrott, J. J., & Haystead, T. A. (2013). Hsp90, an unlikely ally in the war on cancer. FEBS Journal, 280, 1381–1396.PubMedCrossRefGoogle Scholar
  15. Barve, A., Khor, T. O., Nair, S., et al. (2009). Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. International Journal of Cancer, 124, 1693–1699.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bellezza, I., Tucci, A., Galli, F., et al. (2012). Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity. The Journal of Nutritional Biochemistry, 23, 1583–1591.PubMedCrossRefGoogle Scholar
  17. Bhat, A., Gomis, S., Potter, A., & Tikoo, S. K. (2010). Role of Hsp90 in CpG ODN mediated immunostimulation in avian macrophages. Molecular Immunology, 47, 1337–1346.PubMedCrossRefGoogle Scholar
  18. Bilban, M., Haschemi, A., Wegiel, B., Chin, B. Y., Wagner, O., & Otterbein, L. E. (2008). Heme oxygenase and carbon monoxide initiate homeostatic signaling. Journal of Molecular Medicine (Berlin, Germany), 86, 267–279.CrossRefGoogle Scholar
  19. Binart, N., Chambraud, B., Dumas, B. et al. (1989) The cDNA-derived amino acid sequence of chick heat shock protein Mr 90,000 (HSP 90) reveals a "DNA like" structure: potential site of interaction with steroid receptors. Biochem. Biophysical Research Communications 159, 140–147.Google Scholar
  20. Bissell, D. M., Hammaker, L., & Schmid, R. (1972). Liver sinusoidal cells Identification of a subpopulation for erythrocyte catabolism. The Journal of Cell Biology, 54, 107–119.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bongiovanni, G. A., Soria, E. A., & Eynard, A. R. (2007). Effects of the plant flavonoids silymarin and quercetin on arsenite-induced oxidative stress in CHO-K1 cells. Food and Chemical Toxicology, 45, 971–976.PubMedCrossRefGoogle Scholar
  22. Bonkovsky, H. L., Healey, J. F., & Pohl, J. (1990). Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes. European Journal of Biochemistry, 189, 155–166.PubMedCrossRefGoogle Scholar
  23. Bouhouche-Chatelier, L., Chadli, A., & Catelli, M. G. (2001). The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor. Cell Stress Chaperones, 6, 297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bozaykut, P., Ozer, N. K., & Karademir, B. (2014). Regulation of protein turnover by heat shock proteins. Free Radical Biology & Medicine, 77, 195–209.CrossRefGoogle Scholar
  25. Cable, E., Greene, Y., Healey, J., Evans, C. O., & Bonkovsky, H. (1990). Mechanism of synergistic induction of hepatic heme oxygenase by glutethimide and iron: studies in cultured chick embryo liver cells. Biochem. Biophysical Research Communications, 168, 176–181.CrossRefGoogle Scholar
  26. Cable, E. E., Cable, J. W., & Bonkovsky, H. L. (1993). Repression of hepatic delta-aminolevulinate synthase by heme and metalloporphyrins: relationship to inhibition of heme oxygenase. Hepatology, 18, 119–127.PubMedCrossRefGoogle Scholar
  27. Calabrese, V., Ravagna, A., Colombrita, C., et al. (2005). Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. Journal of Neuroscience Research, 79, 509–521.PubMedCrossRefGoogle Scholar
  28. Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., et al. (2011). Cellular stress responses, hermetic phytochemicals and vitagenes in aging and longevity. Biochimica et Biophysica Acta, 1822, 753–783.PubMedCrossRefGoogle Scholar
  29. Calabrese, E. J., Dhawan, G., Kapoor, R., Iavicoli, I., & Calabrese, V. (2015a). What is hormesis and its relevance to healthy aging and longevity? Biogerontology, 16, 693–707.PubMedCrossRefGoogle Scholar
  30. Calabrese, V., Dattilo, S., Petralia, A., et al. (2015b). Analytical approaches to the diagnosis and treatment of aging and aging-related disease: Redox status and proteomics. Free Radical Research, 49, 511–524.PubMedCrossRefGoogle Scholar
  31. Calò, L. A., Pagnin, E., Davis, P. A., et al. (2006). Antioxidant effect of L-carnitine and its short chain esters: Relevance for the protection from oxidative stress related cardiovascular damage. International Journal of Cardiology, 107, 54–60.PubMedCrossRefGoogle Scholar
  32. Calò, L. A., Davis, P. A., Pagnin, E., et al. (2008). Carnitine-mediated improved response to erythropoietin involves induction of haem oxygenase-1: Studies in humans and in an animal model. Nephrology Dialysis Transplantation, 23, 890–895.CrossRefGoogle Scholar
  33. Cao, Y., Li, X., Wang, C. J., et al. (2015). Role of NF-E2-relatedfactor 2 in neuroprotective effect of l-carnitine against high glucose-induced oxidative stress in the retinal ganglion cells. Biomedicine & Pharmacotherapy, 69, 345–348.CrossRefGoogle Scholar
  34. Catelli, M. G., Binart, N., Feramisco, J. R., & Helfman, D. M. (1985a). Cloning of the chick hsp 90 cDNA in expression vector. Nucleic Acids Research, 13, 6035–6047.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Catelli, M. G., Binart, N., Jung-Testas, I., et al. (1985b). The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. The EMBO Journal, 4, 3131–3135.PubMedPubMedCentralGoogle Scholar
  36. Cerný, D., Canová, N. K., Martínek, J., et al. (2009). Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: Involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide, 20, 1–8.PubMedCrossRefGoogle Scholar
  37. Chakraborthy, A., Ramani, P., Sherlin, H. J., Premkumar, P., & Natesan, A. (2014). Antioxidant and pro-oxidant activity of Vitamin C in oral environment. Indian Journal of Dental Research, 25, 499–504.PubMedCrossRefGoogle Scholar
  38. Chang, A. Y., Chan, J. Y., Cheng, H.-L., Tsai, C.-Y., & Chan, S. H. (2009). Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock, 32, 651–658.PubMedCrossRefGoogle Scholar
  39. Chauveau, C., Remy, S., Royer, P. J., et al. (2005). Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood, 106, 1694–1702.PubMedCrossRefGoogle Scholar
  40. Chen, X., Zhu, Y. H., Cheng, X. Y., Zhang, Z. W., & Xu, S. W. (2012). The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes. Molecules, 17, 14565–14572.PubMedCrossRefGoogle Scholar
  41. Chen, X., Yao, H., Yao, L., et al. (2014). Selenium deficiency influences the gene expressions of heat shock proteins and nitric oxide levels in neutrophils of broilers. Biological Trace Element Research, 161, 334–340.PubMedCrossRefGoogle Scholar
  42. Chiosis, G., Vilenchik, M., Kim, J., & Solit, D. (2004). Hsp90: The vulnerable chaperone. Drug Discovery Today, 9, 881–888.PubMedCrossRefGoogle Scholar
  43. Choi, K. M., Kashyap, P. C., Dutta, N., et al. (2010). CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology, 138, 2399–2409.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Choi, M. K., Han, J. M., Kim, H. G., et al. (2013). Aqueous extract of Artemisia capillaries exerts hepatoprotective action in alcohol-pyrazole-fed rat model. Journal of Ethnopharmacology, 147, 662–670.PubMedCrossRefGoogle Scholar
  45. Clerico, E. M., Tilitsky, J. M., Meng, W., & Gierasch, L. M. (2015). How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. Journal of Molecular Biology, 427, 1575–1588.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Collier, N. C., & Schlesinger, M. J. (1986a). Induction of heat-shock proteins in the embryonic chicken lens. Experimental Eye Research, 43, 103–117.PubMedCrossRefGoogle Scholar
  47. Collier, N. C., & Schlesinger, M. J. (1986b). The dynamic state of heat shock proteins in chicken embryo fibroblasts. The Journal of Cell Biology, 103, 1495–1507.PubMedCrossRefGoogle Scholar
  48. Collin, A., Picard, M., & Yahav, S. (2005). The effect of duration of thermal manipulation during chick’s embryogenesis on body weight and body temperature of post hatched chicks. Animal Research, 54, 105–112.CrossRefGoogle Scholar
  49. Collin, A., Berri, C., Tesseraud, S., et al. (2007). Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poultry Science, 86, 795–800.PubMedCrossRefGoogle Scholar
  50. Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.CrossRefGoogle Scholar
  51. Czar, M. J., Welsh, M. J., & Pratt, W. B. (1996). Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. European Journal of Cell Biology, 70, 322–330.PubMedGoogle Scholar
  52. Dangi, S. S., Gupta, M., Dangi, S. K., et al. (2015). Expression of HSPs: An adaptive mechanism during long-term heat stress in goats (Capra hircus). International Journal of Biometeorology, 59, 1095–1106.PubMedCrossRefGoogle Scholar
  53. Daniel, S., Bradley, G., Longshaw, V. M., et al. (2008). Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochimica et Biophysica Acta, 1783, 1003–1014.PubMedCrossRefGoogle Scholar
  54. Das, S., Pan, D., Bera, A. K., et al. (2010). Stress inducible heat shock protein 70: A potent molecular and toxicological signature in arsenic exposed broiler chickens. Molecular Biology Reports, 37, 3151–3155.PubMedCrossRefGoogle Scholar
  55. Dash, A., Chung, S., & Zelenka, P. S. (1994). Expression of HSP70 mRNA in the embryonic chicken lens: Association with differentiation. Experimental Eye Research, 58, 381–387.PubMedCrossRefGoogle Scholar
  56. Daugaard, M., Rohde, M., & Jäättelä, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.PubMedCrossRefGoogle Scholar
  57. De Backer, O., Elinck, E., Blanckaert, B., Leybaert, L., Motterlini, R., & Lefebvre, R. A. (2009). Water-soluble CO-releasing molecules Hemeoxygenase-1 in gastrointestinal diseases reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut, 58, 347–356.PubMedCrossRefGoogle Scholar
  58. de Roos, B., & Duthie, G. G. (2015). Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Molecular Nutrition & Food Research, 59, 1229–1248.CrossRefGoogle Scholar
  59. de Thonel, A., Le Mouël, A., & Mezger, V. (2012). Transcriptional regulation of small HSP-HSF1 and beyond. The International Journal of Biochemistry & Cell Biology, 44, 1593–1612.CrossRefGoogle Scholar
  60. Decuypere, E. (1984). Incubation temperature in relation to postnatal performance in chickens. Archiv Fur Experimentelle Veterinarmedizin, 38, 439–449.PubMedGoogle Scholar
  61. Demir, M., Amanvermez, R., Kamalı Polat, A., et al. (2014). The effect of silymarin on mesenteric ischemia-reperfusion injury. Medical Principles and Practice, 23, 140–144.PubMedCrossRefGoogle Scholar
  62. Dennery, P. A. (2000). Regulation and role of heme oxygenase in oxidative injury. Current Topics in Cellular Regulation, 36, 181–199.PubMedCrossRefGoogle Scholar
  63. Druyan, S., Cahaner, A., & Ashwell, C. M. (2007). The expression patterns of hypoxia-inducing factor subunit alpha-1, heme oxygenase, hypoxia upregulated protein 1, and cardiac troponin T during development of the chicken heart. Poultry Science, 86, 2384–2389.PubMedCrossRefGoogle Scholar
  64. Duncan, E. J., Cheetham, M. E., Chapple, J. P., & van der Spuy, J. (2015). The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcellular Biochemistry, 78, 243–273.PubMedCrossRefGoogle Scholar
  65. Durante, W. (2010). Targeting heme oxygenase-1 in vascular disease. Current Drug Targets, 11, 1504–1516.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ebrahimi, R., Faseleh Jahromi, M., Liang, J. B., Soleimani Farjam, A., Shokryazdan, P., & Idrus, Z. (2015). Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens. BioMed Research International, 149745.
  67. Edens, F. W., Hill, C. H., & Wang, S. (1992). Heat shock protein response in phosphorus-deficient heat-stressed broiler chickens. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 103, 827–831.CrossRefGoogle Scholar
  68. El Golli, E., Hassen, W., Bouslimi, A., Bouaziz, C., Ladjimi, M. M., & Bacha, H. (2006). Induction of Hsp 70 in Vero cells in response to mycotoxins cytoprotection by sub-lethal heat shock and by Vitamin E. Toxicol Letters, 166, 122–130.CrossRefGoogle Scholar
  69. Elbirt, K. K., Whitmarsh, A. J., Davis, R., & Bonkovsky, H. L. (1998). Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. The Journal of Biological Chemistry, 273, 8922–8931.PubMedCrossRefGoogle Scholar
  70. Erlejman, A. G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., & Galigniana, M. D. (2014). Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochimica et Biophysica Acta, 1839, 71–87.PubMedCrossRefGoogle Scholar
  71. Evans, C. O., Healey, J. F., Greene, Y., & Bonkovsky, H. L. (1991). Cloning, sequencing and expression of cDNA for chick liver haem oxygenase. Comparison of avian and mammalian cDNAs and deduced proteins. The Biochemical Journal, 273, 659–666.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Felver-Gant, J. N., Mack, L. A., Dennis, R. L., Eicher, S. D., & Cheng, H. W. (2012). Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poultry Science, 91, 1542–1551.PubMedCrossRefGoogle Scholar
  73. Feng, Z., Liu, Z., Li, X., et al. (2010). α-Tocopherol is an effective Phase II enzyme inducer: protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. The Journal of Nutritional Biochemistry, 21, 1222–1231.PubMedCrossRefGoogle Scholar
  74. Fernandez, M., & Bonkovsky, H. L. (2003). Vascular endothelial growth factor increases heme oxygenase-1 protein expression in the chick embryo chorioallantoic membrane. British Journal of Pharmacology, 139, 634–640.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Figueiredo, D., Gertler, A., Cabello, G., Decuypere, E., Buyse, J., & Dridi, S. (2007). Leptin downregulates heat shock protein-70 (HSP-70) gene expression in chicken liver and hypothalamus. Cell and Tissue Research, 329, 91–101.PubMedCrossRefGoogle Scholar
  76. Fischer, C. P., Hiscock, N. J., Basu, S., et al. (2006). Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. Journal of Applied Physiology, 100, 1679–1687.PubMedCrossRefGoogle Scholar
  77. Fotina, A., Fotina, T.I. and Surai, P.F. (2014). Effect of a water-soluble antistress composition on broiler chickens”. In Proceedings of the XIVth European Poultry Conference, Stavanger, Norway. p. 555.Google Scholar
  78. Fredenburgh, L. E., Merz, A. A., & Cheng, S. (2015). Haeme oxygenase signalling pathway: Implications for cardiovascular disease. European Heart Journal, 36, 1512–1518.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Fujimoto, M., & Nakai, A. (2010). The heat shock factor family and adaptation to proteotoxic stress. The FEBS Journal, 277, 4112–4125.PubMedCrossRefGoogle Scholar
  80. Gabis, K. K., Gildemeister, O. S., Pepe, J. A., Lambrecht, R. W., & Bonkovsky, H. L. (1996). Induction of heme oxygenase-1 in LMH cells. Comparison of LMH cells to primary cultures of chick embryo liver cells. Biochimica et Biophysica Acta, 1290, 113–120.PubMedCrossRefGoogle Scholar
  81. Gabriel, J. E., Ferro, J. A., Stefani, R. M., Ferro, M. I., Gomes, S. L., & Macari, M. (1996). Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. British Poultry Science, 37, 443–449.PubMedCrossRefGoogle Scholar
  82. Gabriel, J. E., da Mota, A. F., Boleli, I. C., Macari, M., & Coutinho, L. L. (2002). Effect of moderate and severe heat stress on avian embryonic hsp70 gene expression. Growth, Development, and Aging, 66, 27–33.PubMedGoogle Scholar
  83. Gan, F., Ren, F., Chen, X., et al. (2013a). Effects of selenium-enriched probiotics on heat shock protein mRNA levels in piglet under heat stress conditions. Journal of Agricultural and Food Chemistry, 61, 2385–2391.PubMedCrossRefGoogle Scholar
  84. Gan, J. K., Zhang, D. X., He, D. L., Zhang, X. Q., Chen, Z. Y., & Luo, Q. B. (2013b). Promoter methylation negatively correlated with mRNA expression but not tissue differential expression after heat stress. Genetics and Molecular Research, 12, 809–819.PubMedCrossRefGoogle Scholar
  85. Gan, J. K., Jiang, L. Y., Kong, L. N., Zhang, X. Q., & Luo, Q. B. (2015). Analysis of genetic diversity of the heat shock protein 70 gene on the basis of abundant sequence polymorphisms in chicken breeds. Genetics and Molecular Research, 14, 1538–1545.PubMedCrossRefGoogle Scholar
  86. Garcia-Carbonero, R., Carnero, A., & Paz-Ares, L. (2013). Inhibition of HSP90 molecular chaperones: Moving into the clinic. The Lancet Oncology, 14, e358–e369.PubMedCrossRefGoogle Scholar
  87. Garnier, C., Lafitte, D., Tsvetkov, P. O., et al. (2002). Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain. The Journal of Biological Chemistry, 277, 12208–12214.PubMedCrossRefGoogle Scholar
  88. Garrido, C., Gurbuxani, S., Ravagnan, L., & Kroemer, G. (2001). Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochemical and Biophysical Research Communications, 286, 433–442.PubMedCrossRefGoogle Scholar
  89. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., & Kroemer, G. (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 5, 2592–2601.PubMedCrossRefGoogle Scholar
  90. Gaviol, H. C., Gasparino, E., Prioli, A. J., & Soares, M. A. (2008). Genetic evaluation of the HSP70 protein in the Japanese quail (Coturnix japonica). Genetics and Molecular Research, 7, 133–139.PubMedCrossRefGoogle Scholar
  91. George, J. F., Braun, A., Brusko, T. M., et al. (2008). Suppression by CD4+CD25+ regulatory t cells is dependent on expression of heme oxygenase-1 in antigen-presenting cells. The American Journal of Pathology, 173, 154–160.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gildemeister, O. S., Pepe, J. A., Lambrecht, R. W., & Bonkovsky, H. L. (2001). Induction of heme oxygenase-1 by phenylarsine oxide. Studies in cultured primary liver cells. Journal of Molecular Cell Biology, 226, 17–26.Google Scholar
  93. Givisiez, P. E., Ferro, J. A., Ferro, M. I., Kronka, S. N., Decuypere, E., & Macari, M. (1999). Hepatic concentration of heat shock protein 70 kD (Hsp70) in broilers subjected to different thermal treatments. British Poultry Science, 40, 292–296.PubMedCrossRefGoogle Scholar
  94. Green, M., Schuetz, T. J., Sullivan, E. K., & Kingston, R. E. (1995). A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Journal of Molecular Cell Biology, 15, 3354–3362.CrossRefGoogle Scholar
  95. Greene, Y. J., Healey, J. F., & Bonkovsky, H. L. (1991). Immunochemical studies of haem oxygenase. Preparation and characterization of antibodies to chick liver haem oxygenase and their use in detecting and quantifying amounts of haem oxygenase protein. The Biochemical Journal, 279, 849–854.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Grenert, J. P., Johnson, B. D., & Toft, D. O. (1999). The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. The Biochemical Journal, 274, 17525–17533.Google Scholar
  97. Gu, X. H., Hao, Y., & Wang, X. L. (2012). Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poultry Science, 91, 790–799.PubMedCrossRefGoogle Scholar
  98. Guerriero, V., Jr., & Raynes, D. A. (1990). Synthesis of heat stress proteins in lymphocytes from livestock. Journal of Animal Sciences, 68, 2779–2883.Google Scholar
  99. Guo, Y., Zhao, P., Guo, G., et al. (2016). Effects of arsenic trioxide exposure on heat shock protein response in the immune organs of chickens. Biological Trace Element Research, 169, 134–141.PubMedCrossRefGoogle Scholar
  100. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far? Life Sciences, 86, 377–384.PubMedCrossRefGoogle Scholar
  101. Haines, D. D., Lekli, I., Teissier, P., Bak, I., & Tosaki, A. (2012). Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: Focus on cardiovascular, lung, neurological and kidney disorders. Acta Physiologica (Oxford, England), 204, 487–501.CrossRefGoogle Scholar
  102. Hao, Y., & Gu, X. H. (2014). Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress. Poultry Science, 93, 2709–2717.PubMedCrossRefGoogle Scholar
  103. Hao, Y., Gu, X. H., & Wang, X. L. (2012). Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 1. Intestinal structure and digestive function. Poultry Science, 91, 781–789.PubMedCrossRefGoogle Scholar
  104. Henstridge, D. C., Whitham, M., & Febbraio, M. A. (2014). Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Molecular Metabolism, 3, 781–793.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Herring, G., & Gawlik, D. E. (2007). The role of stress proteins in the study of allostatic overload in birds: Use and applicability to current studies in avian ecology. ScientificWorld Journal, 28, 1596–1602.CrossRefGoogle Scholar
  106. Holley, S. J., & Yamamoto, K. R. (1995). A role for Hsp90 in retinoid receptor signal transduction. Molecular Biology of the Cell, 6, 1833–1842.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hong, D. S., Banerji, U., Tavana, B., George, G. C., Aaron, J., & Kurzrock, R. (2013). Targeting the molecular chaperone heat shock protein 90 (HSP90): Lessons learned and future directions. Cancer Treatment Reviews, 39, 375–387.PubMedCrossRefGoogle Scholar
  108. Horowitz, M. (2014). Heat acclimation, epigenetics, and cytoprotection memory. Comprehensive Physiology, 4, 199–230.PubMedCrossRefGoogle Scholar
  109. Iannotti, A. M., Rabideau, D. A., & Dougherty, J. J. (1988). Characterization of purified avian 90,000-Da heat shock protein. Archives of Biochemistry and Biophysics, 264, 54–60.PubMedCrossRefGoogle Scholar
  110. Igarashi, K., & Sun, J. (2006). The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxidants & Redox Signaling, 8, 107–118.CrossRefGoogle Scholar
  111. Immenschuh, S., Tan, M., & Ramadori, G. (1999). Nitric oxide mediates the lipopolysaccharide dependent upregulation of the heme oxygenase-1 gene expression in cultured rat Kupffer cells. Journal of Hepatology, 30, 61–69.PubMedCrossRefGoogle Scholar
  112. Inouye, S., Katsuki, K., Izu, H., et al. (2003). Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Journal of Molecular Cell Biology, 23, 5882–5895.CrossRefGoogle Scholar
  113. Jackson, S. E. (2013). Hsp90: Structure and function. Topics in Current Chemistry, 328, 155–240.PubMedCrossRefGoogle Scholar
  114. Jacobs, J. M., Marek, D., Walton, H. S., Sinclair, P. R., & Sinclair, J. F. (1999). Effect of sodium arsenite on heme metabolism in cultured chick embryo hepatocytes. Archives of Biochemistry and Biophysics, 371, 8–14.PubMedCrossRefGoogle Scholar
  115. Jang, J. S., Piao, S., Cha, Y.-N., & Kim, C. (2009). Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. Journal of Clinical Biochemistry and Nutrition, 45, 37–43.CrossRefGoogle Scholar
  116. Janisch, S., Sharifi, A. R., Wicke, M., & Krischek, C. (2015). Changing the incubation temperature during embryonic myogenesis influences the weight performance and meat quality of male and female broilers. Poultry Science, 94, 2581–2588.PubMedCrossRefGoogle Scholar
  117. Jérôme, V., Léger, J., Devin, J., Baulieu, E. E., & Catelli, M. G. (1991). Growth factors acting via tyrosine kinase receptors induce HSP90 alpha gene expression. Growth Factors, 4, 317–327.PubMedCrossRefGoogle Scholar
  118. Jérôme, V., Vourch, C., Baulieu, E. E., & Catelli, M. G. (1993). Cell cycle regulation of the chicken hsp90 alpha expression. Experimental Cell Research, 205, 44–51.PubMedCrossRefGoogle Scholar
  119. Ji, Y. L., Wang, Z., Wang, H., et al. (2012). Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes. Reproductive Toxicology, 34, 357–363.PubMedCrossRefGoogle Scholar
  120. Johnson, B. D., Chadli, A., Felts, S. J., Bouhouche, I., Catelli, M. G., & Toft, D. O. (2000). Hsp90 chaperone activity requires the full-length protein and interaction among its multiple domains. The Journal of Biological Chemistry, 275, 32499–32507.PubMedCrossRefGoogle Scholar
  121. Kalmar, B., & Greensmith, L. (2009). Induction of heat shock proteins for protection against oxidative stress. Advanced Drug Delivery Reviews, 61, 310–318.PubMedCrossRefGoogle Scholar
  122. Kamanli, S., Durmuş, I., Yalçın, S., Yıldırım, U., & Meral, Ö. (2015). Effect of prenatal temperature conditioning of laying hen embryos: Hatching, live performance and response to heat and cold stress during laying period. Journal of Theoretical Biology, 51, 96–104.CrossRefGoogle Scholar
  123. Kantidze, O. L., Velichko, A. K., & Razin, S. V. (2015). Heat stress-induced transcriptional repression. Biochemistry (Moscow), 80, 990–993.CrossRefGoogle Scholar
  124. Kapturczak, M. H., Wasserfall, C., Brusko, T., et al. (2004). Campbell-Thompson M, Ellis TM, Atkinson MA and Agarwal A. Heme oxygenase-1 modulates early inflammatory responses: Evidence from the heme oxygenase-1-deficient mouse. The American Journal of Pathology, 165, 1045–1053.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Karagöz, G. E., & Rüdiger, S. G. (2015). Hsp90 interaction with clients. Trends in Biochemical Sciences, 40, 117–125.PubMedCrossRefGoogle Scholar
  126. Kaur, P., & Bansal, M. P. (2003). Effect of oxidative stress on the spermatogenic process and hsp70 expressions in mice testes. Indian Journal of Biochemistry & Biophysics, 40, 246–251.Google Scholar
  127. Kaushal, N., & Bansal, M. P. (2009). Diminished reproductive potential of male mice in response to selenium-induced oxidative stress: Involvement of HSP70, HSP70-2, and MSJ-1. Journal of Biochemical and Molecular Toxicology, 23, 125–136.PubMedCrossRefGoogle Scholar
  128. Kawazoe, Y., Tanabe, M., Sasai, N., Nagata, K., & Nakai, A. (1999). HSF3 is a major heat shock responsive factor during chicken embryonic development. European Journal of Biochemistry, 265, 688–697.PubMedCrossRefGoogle Scholar
  129. Kelley, P. M., & Schlesinger, M. J. (1978). The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell, 15, 1277–1286.PubMedCrossRefGoogle Scholar
  130. Kelley, P. M., & Schlesinger, M. J. (1982). Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Molecular and Cellular Biochemistry, 2, 267–274.CrossRefGoogle Scholar
  131. Kennedy, D., Jäger, R., Mosser, D. D., & Samali, A. (2014). Regulation of apoptosis by heat shock proteins. IUBMB Life, 66, 327–338.PubMedCrossRefGoogle Scholar
  132. Khalil, A. A., Kabapy, N. F., Deraz, S. F., & Smith, C. (2011). Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta, 1816, 89–104.PubMedGoogle Scholar
  133. Khassaf, M., McArdle, A., Esanu, C., et al. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. Journal of Physiology, 549, 645–652.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Khoso, P. A., Yang, Z., Liu, C., & Li, S. (2015). Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency. Cell Stress Chaperones, 20, 967–978.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Khurana, N., & Bhattacharyya, S. (2015). Hsp90, the concertmaster: Tuning transcription. Frontiers in Oncology, 5, 100.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kim, H. R., Kang, K. I., Kang, H. S., & Kim, H. D. (1999). Identification of heat shock protein 90-associated 84-kDa phosphoprotein. Journal of Biochemistry, 126, 1025–1032.PubMedCrossRefGoogle Scholar
  137. Kiruthiga, P. V., Karthikeyan, K., Archunan, G., Karutha Pandian, S., & Pandima Devi, K. (2015). Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicology and Industrial Health, 31, 523–541.PubMedCrossRefGoogle Scholar
  138. Krischek, C., Kuembet, U., Wicke, M., & Gerken, M. (2013). A higher incubation temperature between embryonic day 3 and 6 influences growth and meat quality characteristics of broiler after hatch. European Poultry Science, 77, 59–65.Google Scholar
  139. Kutuzova, G. D., & DeLuca, H. F. (2007). 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicology and Applied Pharmacology, 218, 37–44.PubMedCrossRefGoogle Scholar
  140. Leandro, N. S., Gonzales, E., Ferro, J. A., Ferro, M. I., Givisiez, P. E., & Macari, M. (2004). Expression of heat shock protein in broiler embryo tissues after acute cold or heat stress. Molecular Reproduction and Development, 67, 172–177.PubMedCrossRefGoogle Scholar
  141. Lee, T.-S., & Chau, L.-Y. (2002). Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nature Medicine, 8, 240–246.PubMedCrossRefGoogle Scholar
  142. Lei, L., Yu, J., & Bao, E. (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. British Poultry Science, 50, 504–511.PubMedCrossRefGoogle Scholar
  143. Li, J., Sun, L., Xu, C., et al. (2012a). Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochimica et Biophysica Sinica, 44, 300–306.PubMedCrossRefGoogle Scholar
  144. Li, J., Soroka, J., & Buchner, J. (2012b). The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta, 1823, 624–635.PubMedCrossRefGoogle Scholar
  145. Li, C., Guo, S., Zhang, M., Gao, J., & Guo, Y. (2015). DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poultry Science, 94, 706–721.PubMedCrossRefGoogle Scholar
  146. Liew, P. K., Zulkifli, I., Hair-Bejo, M., Omar, A. R., & Israf, D. A. (2003). Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress. Poultry Science, 82, 1879–1885.PubMedCrossRefGoogle Scholar
  147. Lincoln, B. C., Healey, J. F., & Bonkovsky, H. L. (1988). Regulation of hepatic haem metabolism. Disparate mechanisms of induction of haem oxygenase by drugs and metals. Biochemical Journal, 250, 189–196.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Lincoln, B. C., Aw, T. Y., & Bonkovsky, H. L. (1989). Heme catabolism in cultured hepatocytes: Evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin. Biochimica et Biophysica Acta, 992, 49–58.PubMedCrossRefGoogle Scholar
  149. Liu, Y., & Chang, A. (2008). Heat shock response relieves ER stress. EMBO Journal, 27, 1049–1059.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Liu, X., Wei, J., Peng, D. H., Layne, M. D., & Yet, S. F. (2005). Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes, 54, 778–784.PubMedCrossRefGoogle Scholar
  151. Liu, L. L., He, J. H., Xie, H. B., Yang, Y. S., Li, J. C., & Zou, Y. (2014). Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poultry Science, 93, 54–62.PubMedCrossRefGoogle Scholar
  152. Liu, C. P., Fu, J., Xu, F. P., Wang, X. S., & Li, S. (2015a). The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals, 28, 163–173.PubMedCrossRefGoogle Scholar
  153. Liu, H., Liu, J., Yan, X., et al. (2015b). Impact of thermal stress during incubation on gene expression in embryonic muscle of Peking Ducks (Anasplatyrhynchos domestica). Journal of Thermal Biology, 53, 80–89.PubMedCrossRefGoogle Scholar
  154. Lordnejad, M. R., Schliess, F., Wettstein, M., & Häussinger, D. (2001). Modulation of the hemeoxygenase HO-1 expression by hyperosmolarity and betaine in primary rat hepatocytes. Archives of Biochemistry and Biophysics, 388, 285–292.PubMedCrossRefGoogle Scholar
  155. Lourens, A., van den Brand, H., Meijerhof, R., & Kemp, B. (2005). Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry Science, 84, 914–920.PubMedCrossRefGoogle Scholar
  156. Loyau, T., Berri, C., & Bedrani, L. (2013). Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. Journal of Animal Science, 91, 3674–3685.PubMedCrossRefGoogle Scholar
  157. Loyau, T., Bedrani, L., Berri, C., et al. (2015). Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: A review. Animal, 9, 76–85.PubMedCrossRefGoogle Scholar
  158. Lu, T. H., Pepe, J. A., Gildemeister, O. S., Tyrrell, R. M., & Bonkovsky, H. L. (1997). Regulation of expression of the human heme oxygenase-1 gene in transfected chick embryo liver cell cultures. Biochimica et Biophysica Acta, 1352, 293–302.PubMedCrossRefGoogle Scholar
  159. Lu, T. H., Lambrecht, R. W., Pepe, J., Shan, Y., Kim, T., & Bonkovsky, H. L. (1998). Molecular cloning, characterization, and expression of the chicken heme oxygenase-1 gene in transfected primary cultures of chick embryo liver cells. Gene, 207, 177–186.PubMedCrossRefGoogle Scholar
  160. Lu, T. H., Shan, Y., Pepe, J., Lambrecht, R. W., & Bonkovsky, H. L. (2000). Upstream regulatory elements in chick heme oxygenase-1 promoter: A study in primary cultures of chick embryo liver cells. Molecular and Cellular Biochemistry, 209, 17–27.PubMedCrossRefGoogle Scholar
  161. Luo, Q. B., Song, X. Y., Ji, C. L., Zhang, X. Q., & Zhang, D. X. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene, 546, 200–205.PubMedCrossRefGoogle Scholar
  162. Maak, S., Melesse, A., Schmidt, R., Schneider, F., & Von Lengerken, G. (2003). Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. British Poultry Science, 44, 133–138.PubMedCrossRefGoogle Scholar
  163. Mahalka, A. K., Kirkegaard, T., Jukola, L. T., Jäättelä, M., & Kinnunen, P. K. (2014). Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochimica et Biophysica Acta, 1838, 1344–1361.PubMedCrossRefGoogle Scholar
  164. Mahmoud, K. Z., & Edens, F. W. (2003). Influence of selenium sources on age-related and mild heat stress-related changes of blood and liver glutathione redox cycle in broiler chickens (Gallus domesticus). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 136, 921–934.CrossRefGoogle Scholar
  165. Mahmoud, K. Z., & Edens, F. W. (2005). Influence of organic selenium on hsp70 response of heat-stressed and enteropathogenic Escherichia coli-challenged broiler chickens (Gallus gallus). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 141, 69–75.Google Scholar
  166. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2003). Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 136, 329–335.CrossRefGoogle Scholar
  167. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004a). The effect of dietary phosphorus on heat shock protein mRNAs during acute heat stress in male broiler chickens (Gallus gallus). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 137, 11–18.Google Scholar
  168. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004b). Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 137, 35–42.CrossRefGoogle Scholar
  169. Maines, M. D., & Sinclair, P. (1977). Cobalt regulation of heme synthesis and degradation in avian embryo liver cell culture. The Journal of Biological Chemistry, 252, 219–223.PubMedGoogle Scholar
  170. Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M., & Neckers, L. M. (2000). The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. The Journal of Biological Chemistry, 275, 37181–37186.PubMedCrossRefGoogle Scholar
  171. Mattson, M. P., & Cheng, A. (2006). Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends in Neurosciences, 29, 632–639.PubMedCrossRefGoogle Scholar
  172. Mayer, M. P. (2013). Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences, 38, 507–514.PubMedCrossRefGoogle Scholar
  173. Mayer, M. P., & Le Breton, L. (2015). Hsp90: breaking the symmetry. Molecular Cell, 58, 8–20.PubMedCrossRefGoogle Scholar
  174. Meijering, R. A., Henning, R. H., & Brundel, B. J. (2015). Reviving the protein quality control system: |Therapeutic target for cardiac disease in the elderly. Trends in Cardiovascular Medicine, 25, 243–247.PubMedCrossRefGoogle Scholar
  175. Meimaridou, E., Gooljar, S. B., & Chapple, J. P. (2009). From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. Journal of Molecular Endocrinology, 42, 1–9.PubMedCrossRefGoogle Scholar
  176. Meng, X., Jérôme, V., Devin, J., Baulieu, E. E., & Catelli, M. G. (1993). Cloning of chicken hsp90 beta: The only vertebrate hsp90 insensitive to heat shock. Biochemical and Biophysical Research Communications, 190, 630–636.PubMedCrossRefGoogle Scholar
  177. Meng, X., Baulieu, E. E., & Catelli, M. G. (1995). Isolation of chicken hsp90 beta gene promoter. Biochemical and Biophysical Research Communications, 206, 644–651.PubMedCrossRefGoogle Scholar
  178. Mezquita, B., Mezquita, C., & Mezquita, J. (1998). Marked differences between avian and mammalian testicular cells in the heat shock induction and polyadenylation of Hsp70 and ubiquitin transcripts. FEBS Letters, 436, 382–386.PubMedCrossRefGoogle Scholar
  179. Miller, L., & Qureshi, M. A. (1992a). Heat-shock protein synthesis in chicken macrophages: Influence of and in vitro heat shock, lead acetate, and lipopolysaccharide. Poultry Science, 71, 988–998.PubMedCrossRefGoogle Scholar
  180. Miller, L., & Qureshi, M. A. (1992b). Comparison of heat-shock-induced and lipopolysaccharide-induced protein changes and tumoricidal activity in a chicken mononuclear cell line. Poultry Science, 71, 979–987.PubMedCrossRefGoogle Scholar
  181. Miller, L., & Qureshi, M. A. (1992c). Molecular changes associated with heat-shock treatment in avian mononuclear and lymphoid lineage cells. Poultry Science, 71, 473–481.PubMedCrossRefGoogle Scholar
  182. Miller, L., & Qureshi, M. A. (1992d). Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure. Veterinary Immunology and Immunopathology, 30, 179–191.PubMedCrossRefGoogle Scholar
  183. Minne, B., & Decuypere, E. (1984). Effects of late prenatal temperatures on some thermoregulatory aspects in young chickens. Archiv für Experimentelle Veterinärmedizin, 38, 374–383.PubMedGoogle Scholar
  184. Moraes, V. M. B., Malheirosb, R. D., Bruggeman, V., et al. (2004). The effect of timing of thermal conditioning during incubation on embryo physiological parameters and its relationship to thermotolerance in adult broiler chickens. Journal of Thermal Biology, 29, 55–61.CrossRefGoogle Scholar
  185. Moreau, A., Hill, M., & Thebault, P. (2009). Tolerogenic dendritic cells actively inhibit T cells through heme oxygenase-1 in rodents and in nonhuman primates. FASEB Journal, 23, 3070–3077.PubMedCrossRefGoogle Scholar
  186. Morimoto, R., & Fodor, E. (1984). Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes. The Journal of Cell Biology, 99, 1316–1323.PubMedCrossRefGoogle Scholar
  187. Morimoto, R. I., Hunt, C., Huang, S. Y., Berg, K. L., & Banerji, S. S. (1986). Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. The Journal of Biological Chemistry, 261, 12692–12699.PubMedGoogle Scholar
  188. Morse, D., Lin, L., Choi, A. M., & Ryter, S. W. (2009). Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radical Biology & Medicine, 47, 1–12.CrossRefGoogle Scholar
  189. Mueller, K., Blum, N. M., Kluge, H., & Mueller, A. S. (2012). Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens. British Journal of Nutrition, 108, 588–602.PubMedCrossRefGoogle Scholar
  190. Murakami, A. (2013). Modulation of protein quality control systems by food phytochemicals. Journal of Clinical Biochemistry and Nutrition, 52, 215–227.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Murakami, A. (2014). Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Archives of Biochemistry and Biophysics, 557, 3–10.PubMedCrossRefGoogle Scholar
  192. Muthumani, M., & Prabu, S. M. (2014). Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovascular Toxicology, 14, 83–97.PubMedCrossRefGoogle Scholar
  193. Nagahori, K., Iwamoto, S., Maruyama, A., et al. (2010). Basic characterization of 90 kDa heat shock protein genes HSP90AA1, HSP90AB1, HSP90B1 and TRAP1 expressed in Japanese quail (Coturnix japonica). Animal Science Journal, 81, 513–518.PubMedCrossRefGoogle Scholar
  194. Nakai, A., & Ishikawa, T. (2000). A nuclear localization signal is essential for stress-induced dimer-to-trimer transition of heat shock transcription factor 3. The Journal of Biological Chemistry, 275, 34665–34671.PubMedCrossRefGoogle Scholar
  195. Nakai, A., & Ishikawa, T. (2001). Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. EMBO Journal, 20, 2885–2895.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Nakai, A., & Morimoto, R. I. (1993). Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Molecular and Cellular Biology, 13, 1983–1997.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Nakai, A., Kawazoe, Y., Tanabe, M., Nagata, K., & Morimoto, R. I. (1995). The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Molecular and Cellular Biology, 15, 5268–5278.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Nakamichi, I., Habtezion, A., Zhong, B., Contag, C. H., Butcher, E. C., & Omary, M. B. (2005). Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. The Journal of Clinical Investigation, 115, 3007–3014.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Ndisang, J. F. (2014). Cross-talk between heme oxygenase and peroxisome proliferator-activated receptors in the regulation of physiological functions. Frontiers in Bioscience (Landmark Ed.), 19, 916–935.CrossRefGoogle Scholar
  200. Niess, A. M., Passek, F., Lorenz, I., et al. (1999). Expression of the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes: acute and adaptational responses to endurance exercise. Free Radical Biology and Medicine, 26, 184–192.PubMedCrossRefGoogle Scholar
  201. O’Neill, S., Harrison, E. M., Ross, J. A., Wigmore, S. J., & Hughes, J. (2014). Heat-shock proteins and acute ischaemic kidney injury. Nephron Experimental Nephrology, 126, 167–174.PubMedCrossRefGoogle Scholar
  202. Oermann, E., Bidmon, H. J., Witte, O. W., & Zilles, K. (2004). Effects of 1alpha,25dihydroxyvitamin D3 on the expression of HO-1 and GFAP in glial cells of the photothrombotically lesioned cerebral cortex. Journal of Chemical Neuroanatomy, 28, 225–238.PubMedCrossRefGoogle Scholar
  203. Oksala, N. K., Ekmekçi, F. G., Ozsoy, E., et al. (2014). Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biology, 3, 25–28.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Oommen, D., Giricz, Z., Srinivas, U. K., & Samali, A. (2013). Atypical heat shock response and acquisition of thermotolerance in P388D1 cells. Biochemical and Biophysical Research Communications, 430, 236–240.PubMedCrossRefGoogle Scholar
  205. Oskoueian, E., Abdullah, N., Idrus, Z., et al. (2014). Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC Complementary and Alternative Medicine, 14, 368.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Owen, B. A., Sullivan, W. P., Felts, S. J., & Toft, D. O. (2002). Regulation of heat shock protein 90 ATPase activity by sequences in the carboxyl terminus. The Journal of Biological Chemistry, 277, 7086–7091.PubMedCrossRefGoogle Scholar
  207. Pae, H. O., & Chung, H. T. (2009). Heme oxygenase-1: Its therapeutic roles in inflammatory diseases. Immune Network, 9, 12–19.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Passinen, S., Valkila, J., Manninen, T., Syvälä, H., & Ylikomi, T. (2001). The C-terminal half of Hsp90 is responsible for its cytoplasmic localization. European Journal of Biochemistry, 268, 5337–5342.PubMedCrossRefGoogle Scholar
  209. Pekki, A. K. (1991). Different immunoelectron microscopic locations of progesterone receptor and HSP90 in chick oviduct epithelial cells. Journal of Histochemistry & Cytochemistry, 39, 1095–1101.CrossRefGoogle Scholar
  210. Peng, Y. Z., Wang, Y. W., Ning, D., & Guo, Y. M. (2013). Changes of haematic parameters, redox status and mitochondrial complex activity in the heart and liver of broilers fed with different density diets under low ambient temperature. Avian Pathology, 42, 327–334.PubMedCrossRefGoogle Scholar
  211. Piestun, Y., Shinder, D., Ruzal, M., Halevy, O., Brake, J., & Yahav, S. (2008). Thermal manipulations during broiler embryogenesis: Effect on the acquisition of thermotolerance. Poultry Science, 87, 1516–1525.PubMedCrossRefGoogle Scholar
  212. Piestun, Y., Harel, M., Barak, M., Yahav, S., & Halevy, O. (2009). Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. Journal of Applied Physiology, 106, 233–240.PubMedCrossRefGoogle Scholar
  213. Piestun, Y., Druyan, S., Brake, J., & Yahav, S. (2013). Thermal manipulations during broiler incubation alter performance of broilers to 70 days of age. Poultry Science, 92, 1155–1163.PubMedCrossRefGoogle Scholar
  214. Piestun, Y., Zimmerman, I., & Yahav, S. (2015a). Thermal manipulations of turkey embryos: The effect on thermoregulation and development during embryogenesis. Poultry Science, 94, 273–280.PubMedCrossRefGoogle Scholar
  215. Piestun, Y., Yahav, S., & Halevy, O. (2015b). Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens. Poultry Science, 94, 2528–2536.PubMedCrossRefGoogle Scholar
  216. Pockley, A.G. and Multhoff, G. (2008). Cell stress proteins in extracellular fluids: Friend or foe? Novartis Foundation Symposium 291, 86–95.Google Scholar
  217. Poss, K. D., & Tonegawa, S. (1997). Reduced stress defense in heme oxygenase 1-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 10925–10930.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Prakasam, R., Fujimoto, M., Takii, R., et al. (2013). Chicken IL-6 is a heat-shock gene. FEBS Letters, 587, 3541–3547.PubMedCrossRefGoogle Scholar
  219. Prasad, A. R., & Datta, K. (1984). Altered regulation of hepatic heme metabolism in cadmium exposed chick embryo. Biochemistry International, 8, 289–298.PubMedGoogle Scholar
  220. Pratt, W. B., Morishima, Y., Peng, H. M., & Osawa, Y. (2010). Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Experimental Biology and Medicine (Maywood), 235, 278–289.CrossRefGoogle Scholar
  221. Qu, B., Jia, Y., Liu, Y., Wang, H., Ren, G., & Wang, H. (2015). The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: A literature review. Cell Stress & Chaperones, 20, 885–892.CrossRefGoogle Scholar
  222. Radanyi, C., Renoir, J. M., Sabbah, M., & Baulieu, E. E. (1989). Chick heat-shock protein of Mr =90,000, free or released from progesterone receptor, is in a dimeric form. The Journal of Biological Chemistry, 264, 2568–2573.PubMedGoogle Scholar
  223. Rajkumar, U., Vinoth, A., Shanmugam, M., Rajaravindra, K. S., & Rama Rao, S. V. (2015). Effect of Embryonic Thermal Exposure on Heat Shock Proteins (HSPs) Gene Expression and Serum T3 Concentration in Two Broiler Populations. Animal Biotechnology, 26, 260–267.PubMedCrossRefGoogle Scholar
  224. Ravagnan, L., Gurbuxani, S., Susin, S. A., et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3, 839–843.PubMedCrossRefGoogle Scholar
  225. Reed, D. K., Hall, S., & Arany, I. (2015). α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1. Journal of Physiology and Biochemistry, 71, 1–7.PubMedCrossRefGoogle Scholar
  226. Remy, S., Blancou, P., & Tesson, L. (2009). Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. The Journal of Immunology, 182, 1877–1884.PubMedCrossRefGoogle Scholar
  227. Revathi, B., & Prashanth, K. (2015). Potential Hsp90 Inhibitors: A novel target for cancer therapy. Chemotherapy, 4, 146.Google Scholar
  228. Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: Life on the verge of death. Molecular Cell, 40, 253–266.PubMedCrossRefGoogle Scholar
  229. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Cellular and Molecular Life Sciences, 18, 571–573.CrossRefGoogle Scholar
  230. Rivera, R. E., Christensen, V. L., Edens, F. W., & Wineland, M. J. (2005). Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 427–432.Google Scholar
  231. Roth, C. L., Elfers, C. T., Figlewicz, D. P., et al. (2012). Vitamin D deficiency in obese rats exacerbates NAFLD and increases hepatic resistin and toll-like receptor activation. Hepatology, 55, 1103–1111.PubMedCrossRefGoogle Scholar
  232. Ryter, S. W., & Choi, A. M. (2016). Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Translational Research, 167, 7–34.PubMedCrossRefGoogle Scholar
  233. Sahin, N., Tuzcu, M., Orhan, C., Onderci, M., Eroksuz, Y., & Sahin, K. (2009). The effects of vitamin C and E supplementation on heat shock protein 70 response of ovary and brain in heat-stressed quail. British Poultry Science, 50, 259–265.Google Scholar
  234. Sakurai, H., & Enoki, Y. (2010). Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS Journals, 277, 4140–4149.CrossRefGoogle Scholar
  235. Salinas, M., Wang, J., Rosa de Sagarra, M., et al. (2004). Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Letters, 578, 90–94.PubMedCrossRefGoogle Scholar
  236. Sánchez-Moreno, C., Paniagua, M., Madrid, A., & Martín, A. (2003). Protective effect of vitamin C against the ethanol mediated toxic effects on human brain glial cells. The Journal of Nutritional Biochemistry, 14, 606–613.Google Scholar
  237. Sardana, M. K., Drummond, G. S., Sassa, S., & Kappas, A. (1981). The potent heme oxygenase inducing action of arsenic and parasiticidal arsenicals. Pharmacology, 23, 247–253.PubMedCrossRefGoogle Scholar
  238. Sardana, M. K., Sassa, S., & Kappas, A. (1982). Metal ion-mediated regulation of heme oxygenase induction in cultured avian liver cells. The Journal of Biological Chemistry, 257, 4806–4811.Google Scholar
  239. Sardana, M. K., Sassa, S., & Kappas, A. (1985). Hormonal regulation of heme oxygenase induction in avian hepatocyte culture. Biochem Pharmacol, 34, 2937–2944.PubMedCrossRefGoogle Scholar
  240. Sass, J. B., & Krone, P. H. (1997). HSP90alpha gene expression may be a conserved feature of vertebrate somitogenesis. Experimental Cell Research, 233, 391–394.PubMedCrossRefGoogle Scholar
  241. Schipper, H. M., & Song, W. (2015). A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. International Journal of Molecular Sciences, 16, 5400–5419.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Selim, M. E., Rashedel, H. A., Aleisa, N. A., & Daghestani, M. H. (2012). The protection role of heat shock protein 70 (HSP-70) in the testes of cadmium-exposed rats. Bioinformation, 8, 58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  243. Semenza, G. L. (2010). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochimica et Biophysica Acta, 1813, 1263–1268.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Shabtay, A., & Arad, Z. (2006). Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: Is redundancy developmentally related? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291, R566–R572.Google Scholar
  245. Shan, Y., Lambrecht, R. W., Hong Lu, T., & Bonkovsky, H. L. (1999). Effects of phenylarsine oxide on expression of heme oxygenase-1 reporter constructs in transiently transfected cultures of chick embryo liver cells. Archives of Biochemistry and Biophysics, 372, 224–229.PubMedCrossRefGoogle Scholar
  246. Shan, Y., Pepe, J., Lambrecht, R. W., & Bonkovsky, H. L. (2002). Mapping of the chick heme oxygenase-1 proximal promoter for responsiveness to metalloporphyrins. Archives of Biochemistry and Biophysics, 399, 159–166.PubMedCrossRefGoogle Scholar
  247. Shan, Y., Lambrecht, R. W., & Bonkovsky, H. L. (2004). Identification of key elements that are responsible for heme-mediated induction of the avian heme oxygenase-1 gene. Biochimica et Biophysica Acta, 1679, 87–94.PubMedCrossRefGoogle Scholar
  248. Shatskih, E., Latipova, E., Fisinin, V., Denev, S., & Surai, P. (2015). Molecular mechanisms and new strategies to fight stresses in egg-producing birds. Agriculture Science and Technology, 7, 3–10.Google Scholar
  249. Shiber, A., & Ravid, T. (2014). Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules, 4, 704–724.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Shih, P. K., Chen, Y. C., Huang, Y. C., et al. (2011). Pretreatment of vitamin D3 ameliorates lung and muscle injury induced by reperfusion of bilateral femoral vessels in a rat model. The Journal of Surgical Research, 171, 323–328.Google Scholar
  251. Shinkawa, T., Tan, K., Fujimoto, M., et al. (2011). Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Molecular Biology of the Cell, 22, 3571–3583.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Shinozaki, F., Minami, M., Chiba, T., et al. (2006). Depletion of hsp90beta induces multiple defects in B cell receptor signaling. The Journal of Biological Chemistry, 281, 16361–16369.Google Scholar
  253. Simar, D., Malatesta, D., Mas, E., Delage, M., & Caillaud, C. (2012). Effect of an 8-weeks aerobic training program in elderly on oxidative stress and HSP72 expression in leukocytes during antioxidant supplementation. The Journal of Nutrition, Health & Aging, 16, 155–161.Google Scholar
  254. Soares, M. P., & Bach, F. H. (2009). Heme oxygenase-1: From biology to therapeutic potential. Trends in Molecular Medicine, 15, 50–58.PubMedCrossRefGoogle Scholar
  255. Soares, M. P., Usheva, A., Brouard, S., et al. (2002). Modulation of endothelial cell apoptosis by heme oxygenase-1-derived carbon monoxide. Antioxid Redox Signal, 4, 321–329.PubMedCrossRefGoogle Scholar
  256. Soleimani, A. F., Zulkifli, I., Omar, A. R., & Raha, A. R. (2011). Physiological responses of 3 chicken breeds to acute heat stress. Poultry Science, 90, 1435–1440.PubMedCrossRefGoogle Scholar
  257. Soleimani, A. F., Zulkifli, I., Omar, A. R., & Raha, A. R. (2012). The relationship between adrenocortical function and Hsp70 expression in socially isolated Japanese quail. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 16, 140–144.CrossRefGoogle Scholar
  258. Sozcu, A., & Ipek, A. (2015). Acute and chronic eggshell temperature manipulations during hatching term influence hatchability, broiler performance, and ascites incidence. Poultry Science, 94, 319–327.PubMedCrossRefGoogle Scholar
  259. Spiro, I. J., Sapareto, S. A., Raaphorst, G. P., & Dewey, W. C. (1982). The effect of chronic and acute heat conditioning on the development of thermal tolerance. International Journal of Radiation Oncology Biology Physics, 8, 53–58.CrossRefGoogle Scholar
  260. Sreedhar, A. S., Kalmár, E., Csermely, P., & Shen, Y. F. (2004). Hsp90 isoforms: Functions, expression and clinical importance. FEBS Letters, 562, 11–15.PubMedCrossRefGoogle Scholar
  261. Stetler, R. A., Gan, Y., Zhang, W., et al. (2010). Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Progress in Neurobiology, 92, 184–211.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Sun, H., Jiang, R., Xu, S., et al. (2015a). Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. Journal of Animal Science and Biotechnology, 6, 6.PubMedPubMedCentralCrossRefGoogle Scholar
  263. Sun, L., Lamont, S. J., Cooksey, A. M., et al. (2015b). Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperones, 20, 939–950.PubMedPubMedCentralCrossRefGoogle Scholar
  264. Surai, P. F. (1999a). Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. British Poultry Science, 40, 397–405.PubMedCrossRefGoogle Scholar
  265. Surai, P. F. (1999b). Vitamin E in avian reproduction. Poultry and Avian Biology Reviews, 10, 1–60.Google Scholar
  266. Surai, P. F. (2002). Natural antioxidants in avian nutrition and reproduction. Nottingham: Nottingham University Press.Google Scholar
  267. Surai, P. F. (2006). Selenium in nutrition and Health. Nottingham: Nottingham University Press.Google Scholar
  268. Surai, P. F. (2014). Polyphenol compounds in the chicken/animal diet: From the past to the future. Journal of Animal Physiology and Animal Nutrition, 98, 19–31.PubMedCrossRefGoogle Scholar
  269. Surai, P. F. (2015a). Antioxidant Action of Carnitine: Molecular Mechanisms and Practical Applications. EC Veterinary Science, 2, 66–84.Google Scholar
  270. Surai, P. F. (2015b). Silymarin as a Natural Antioxidant: An overview of the current evidence and perspectives. Antioxidants, 4, 204–247.Google Scholar
  271. Surai, P. F. (2015c). Antioxidant systems in poultry biology: Heat shock proteins. Journal of Science, 5, 1188–1222.Google Scholar
  272. Surai, P. F., & Fisinin, V. I. (2012). The modern anti-stress technologies in poultry: From antioxidants to vitagenes. Agricultural Biology (Sel’skokhozyaistvennaya Biologiya, Moscow), 4, 3–13.Google Scholar
  273. Surai, P.F. and Fisinin, V.I. (2014) Antioxidant systems of the body: From vitamin E to polyphenols and beyond. Proceedings of the 35th Western Nutrition Conference, Edmonton, Alberta, 265–277.Google Scholar
  274. Surai, P. F., & Fisinin, V. I. (2015). Antioxidant-Prooxidant Balance in the Intestine: Applications in chick placement and pig weaning. Journal of Veterinary Science and Medicine, 3, 1–16.Google Scholar
  275. Surai, P. F., Noble, R. C., & Speake, B. K. (1996). Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochimica et Biophysica Acta, 1304, 1–10.PubMedCrossRefGoogle Scholar
  276. Taipale, M., Jarosz, D. F., & Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nature Reviews Molecular Cell Biology, 11, 515–528.PubMedCrossRefGoogle Scholar
  277. Takii, R., Fujimoto, M., Tan, K., et al. (2015). ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Molecular and Cellular Biology, 35, 11–25.PubMedCrossRefGoogle Scholar
  278. Tanabe, M., Nakai, A., Kawazoe, Y., & Nagata, K. (1997). Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. The Journal of Biological Chemistry, 272, 15389–15395.PubMedCrossRefGoogle Scholar
  279. Tanabe, M., Kawazoe, Y., Takeda, S., Morimoto, R. I., Nagata, K., & Nakai, A. (1998). Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO Journal, 17, 1750–1758.PubMedPubMedCentralCrossRefGoogle Scholar
  280. Terry, C. M., Clikeman, J. A., Hoidal, J. R., & Callahan, K. S. (1998). Effect of tumor necrosis factor-α and interleukin-1a on heme oxygenase-1 expression in human endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology, 274, H883–H891.CrossRefGoogle Scholar
  281. Tona, K., Onagbesan, O., Bruggeman, V., et al. (2008). Effects of heat conditioning at d16–18 of incubation or during early broiler rearing on embryophysiology, post-hatch growth performance and heat tolerance. Arch Geflug, 72, 75–83.Google Scholar
  282. Trinklein, N. D., Chen, W. C., Kingston, R. E., & Myers, R. M. (2004). Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones, 9, 21–28.PubMedPubMedCentralCrossRefGoogle Scholar
  283. True, A. L., Olive, M., Boehm, M., et al. (2007). Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circulation Research, 101, 893–901.PubMedCrossRefGoogle Scholar
  284. Tzima, S., Victoratos, P., Kranidioti, K., Alexiou, M., & Kollias, G. (2009). Myeloid heme oxygenase–1 regulates innate immunity and autoimmunity by modulating IFN-b production. The Journal of Experimental Medicine, 206, 1167–1179.PubMedPubMedCentralCrossRefGoogle Scholar
  285. Vachharajani, T. J., Work, J., Issekutz, A. C., & Granger, D. N. (2000). Heme oxygenase modulates selectin expression in different regional vascular beds. American Journal of Physiology-Heart and Circulatory Physiology, 278, H1613–H1617.PubMedCrossRefGoogle Scholar
  286. Velichko, O. and Surai, P.F. (2014). Effect of an antistress composition supplied with water on chick growth and development. In Proceedings of the XIVth European Poultry Conference, Stavanger, Norway, p. 551.Google Scholar
  287. Velichko, A. K., Markova, E. N., Petrova, N. V., Razin, S. V., & Kantidze, O. L. (2013). Mechanisms of heat shock response in mammals. Cellular and Molecular Life Sciences, 70, 4229–4241.PubMedCrossRefGoogle Scholar
  288. Venditti, C. C., & Smith, G. N. (2014). Involvement of the heme oxygenase system in the development of preeclampsia and as a possible therapeutic target. Women’s Health (London, England), 10, 623–643.CrossRefGoogle Scholar
  289. Vihervaara, A., & Sistonen, L. (2014). HSF1 at a glance. Journal of Cell Science, 127, 261–266.PubMedCrossRefGoogle Scholar
  290. Voellmy, R., & Bromley, P. A. (1982). Massive heat-shock polypeptide synthesis in late chicken embryos: Convenient system for study of protein synthesis in highly differentiated organisms. Molecular and Cellular Biology, 2, 479–483.PubMedPubMedCentralCrossRefGoogle Scholar
  291. Voellmy, R., Bromley, P., & Kocher, H. P. (1983). Structural similarities between corresponding heat-shock proteins from different eukaryotic cells. The Journal of Biological Chemistry, 258, 3516–3522.PubMedGoogle Scholar
  292. Vourch, C., Binart, N., Chambraud, B., et al. (1989). Isolation and functional analysis of chicken 90-kDa heat shock protein gene promoter. Nucleic Acids Research, 17, 5259–5272.CrossRefGoogle Scholar
  293. Walstra, I., Ten Napel, J., Kemp, B., & van den Brand, H. (2010). Temperature manipulation during layer chick embryogenesis. Poultry Science, 89, 1502–1508.PubMedCrossRefGoogle Scholar
  294. Wang, S., & Edens, F. W. (1998). Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poultry Science, 77, 1636–1645.PubMedCrossRefGoogle Scholar
  295. Wang, S. H., Cheng, C. Y., Tang, P. C., et al. (2013). Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology, 79, 374–382.PubMedCrossRefGoogle Scholar
  296. Wang, S. H., Cheng, C. Y., Chen, C. J., et al. (2014). Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology, 82, 80–94.PubMedCrossRefGoogle Scholar
  297. Wayne, N., Mishra, P., & Bolon, D. N. (2011). Hsp90 and client protein maturation. Methods in Molecular Biology, 787, 33–44.PubMedPubMedCentralCrossRefGoogle Scholar
  298. Webb, D. R. (1987). Thermal tolerance of avian embryos: A review. Condor, 89, 874–898.CrossRefGoogle Scholar
  299. Wegiel, B., Hedblom, A., Li, M., et al. (2014a). Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells. Cell Death & Disease, 5, e1139.CrossRefGoogle Scholar
  300. Wegiel, B., Nemeth, Z., Correa-Costa, M., Bulmer, A. C., & Otterbein, L. E. (2014b). Heme oxygenase-1: A metabolic nike. Antioxid Redox Signal, 20, 1709–1722.PubMedPubMedCentralCrossRefGoogle Scholar
  301. Werner, C., Wecke, C., Liebert, F., & Wicke, M. (2010). Increasing the incubation temperature between embryonic day 7 and 10 has no influence on the growth and slaughter characteristics as well as meat quality of broilers. Animal, 4, 810–816.PubMedCrossRefGoogle Scholar
  302. White, C. N., & Hightower, L. E. (1984). Stress mRNA metabolism in canavanine-treated chicken embryo cells. Molecular and Cellular Biology, 4, 1534–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nature Reviews Cancer, 5, 761–772.PubMedCrossRefGoogle Scholar
  304. Widelitz, R. B., Magun, B. E., & Gerner, E. W. (1986). Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts. Molecular and Cellular Biology, 6, 1088–1094.PubMedPubMedCentralCrossRefGoogle Scholar
  305. Wijayanti, N., Huber, S., Samoylenko, A., Kietzmann, T., & Immenschuh, S. (2004). Role of NF-kB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal, 6, 802–810.PubMedGoogle Scholar
  306. Wolfe, M. S., & Zatz, M. (1994). Synthesis of heat shock proteins in cultured chick pineal cells. Brain Research, 662, 273–277.PubMedCrossRefGoogle Scholar
  307. Wu, M. L., Ho, Y. C., Lin, C. Y., & Yet, S. F. (2011). Heme oxygenase-1 in inflammation and cardiovascular disease. American Journal of Cardiovascular Disease, 1, 150–158.PubMedPubMedCentralGoogle Scholar
  308. Xia, M., Gan, J., Luo, Q., Zhang, X., & Yang, G. (2013). Identification of duck HSP70 gene, polymorphism analysis and tissue expression under control and heat stress conditions. British Poultry Science, 54, 562–566.PubMedCrossRefGoogle Scholar
  309. Xie, J., Tang, L., Lu, L., et al. (2014). Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One, 9, e102204.PubMedPubMedCentralCrossRefGoogle Scholar
  310. Xu, Z., Wang, Z., Li, J. J., et al. (2013). Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food and Chemical Toxicology, 58, 1–7.PubMedCrossRefGoogle Scholar
  311. Xu, D., Li, W., Huang, Y., He, J., & Tian, Y. (2014). The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biological Trace Element Research, 160, 232–237.PubMedCrossRefGoogle Scholar
  312. Xu, S., Chen, Y. H., Tan, Z. X., et al. (2015). Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury. The Journal of Steroid Biochemistry and Molecular Biology, 152, 133–141.PubMedCrossRefGoogle Scholar
  313. Yahav, S., Shamai, A., Haberfeld, A., Horev, G., Hurwitz, S., & Einat, M. (1997a). Induction of thermotolerance in chickens by temperature conditioning: Heat shock protein expression. Annals of the New York Academy of Sciences, 813, 628–636.PubMedCrossRefGoogle Scholar
  314. Yahav, S., Shamay, A., Horev, G., Bar-Ilan, D., Genina, O., & Friedman-Einat, M. (1997b). Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens. Poultry Science, 76, 1428–1434.PubMedCrossRefGoogle Scholar
  315. Yahav, S., Sasson Rath, R., & Shinder, D. (2004a). The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. Journal of Thermal Biology, 29, 245–250.CrossRefGoogle Scholar
  316. Yahav, S., Collin, A., Shinder, D., & Picard, M. (2004b). Thermal manipulations during broiler embryogenesis: Effects of timing and temperature. Poultry Science, 83, 245–250.CrossRefGoogle Scholar
  317. Yalçın, S., Çabuk, M., Bruggeman, V., et al. (2008). Acclimation to heat during incubation. 1. Embryonic morphological traits, blood biochemistry, and hatching performance. Poultry Science, 87, 1219–1228.PubMedCrossRefGoogle Scholar
  318. Yalçın, S., Özkan, S., Sigel, P. B., Yenisey, Ç., & Akşit, M. (2012). Manipulation of in cubation temperatures to increase cold resistance of broilers: Influence on embryo development, organ weights, hormones and body composition. Japan Poultry Science, 49, 133–139.CrossRefGoogle Scholar
  319. Yang, Z., Liu, C., Zheng, W., Teng, X., & Li, S. (2016). The functions of antioxidants and heat shock proteins are altered in the immune organs of selenium-deficient broiler chickens. Biological Trace Element Research, 169, 341–351.PubMedCrossRefGoogle Scholar
  320. Yazama, F., Furuta, K., Fujimoto, M., et al. (2006). Abnormal spermatogenesis in mice unable to synthesize ascorbic acid. Anatomical Science International, 81, 115–125.PubMedCrossRefGoogle Scholar
  321. Yet, S. F., Perrella, M. A., Layne, M. D., et al. (1999). Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. The Journal of Clinical Investigation, 103, R23–R29.PubMedPubMedCentralCrossRefGoogle Scholar
  322. Yousuf, S., Atif, F., Ahmad, M., et al. (2007). Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Research, 1147, 218–225.PubMedCrossRefGoogle Scholar
  323. Yu, J., Bao, E., Yan, J., & Lei, L. (2008). Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones, 13, 327–335.PubMedPubMedCentralCrossRefGoogle Scholar
  324. Yun, S. H., Moon, Y. S., Sohn, S. H., & Jang, I. S. (2012). Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats. Experimental Animals, 61, 543–553.PubMedCrossRefGoogle Scholar
  325. Zahir, F., Rabbani, G., Khan, R. H., Rizvi, S. J., Jamal, M. S., & Abuzenadah, A. M. (2015). The pharmacological features of bilirubin: the question of the century. Cellular and Molecular Biology Letters, 20, 418–447.PubMedCrossRefGoogle Scholar
  326. Zhang, H., & Burrows, F. (2004). Targeting multiple signal transduction pathways through inhibition of Hsp90. Journal of Molecular Medicine (Berlin, Germany), 82, 488–499.Google Scholar
  327. Zhang, B., Tanaka, J., Yang, L., et al. (2004). Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience, 126, 433–440.PubMedCrossRefGoogle Scholar
  328. Zhang, W. W., Kong, L. N., Zhang, X. Q., & Luo, Q. B. (2014). Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genetics and Molecular Research, 13, b9787–b9794.CrossRefGoogle Scholar
  329. Zhao, H., Brandt, G. E., Galam, L., Matts, R. L., & Blagg, B. S. (2011). Identification and initial SAR of silybin: An Hsp90 inhibitor. Bioorganic & Medicinal Chemistry Letters, 21, 2659–2664.CrossRefGoogle Scholar
  330. Zhao, B., Fei, J., Chen, Y., et al. (2014). Vitamin C treatment attenuates hemorrhagic shock related multi-organ injuries through the induction of heme oxygenase-1. BMC Complementary and Alternative Medicine, 14, 442.PubMedPubMedCentralCrossRefGoogle Scholar
  331. Zhen, F. S., Du, H. L., Xu, H. P., Luo, Q. B., & Zhang, X. Q. (2006). Tissue and allelic-specific expression of hsp70 gene in chickens: Basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. British Poultry Science, 47, 449–455.PubMedCrossRefGoogle Scholar
  332. Zhong, W., Gu, B., Gu, Y., Groome, L. J., Sun, J., & Wang, Y. (2014). Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. The Journal of Steroid Biochemistry and Molecular Biology, 140, 56–62.PubMedCrossRefGoogle Scholar
  333. Zhu, X., Guo, K., & Lu, Y. (2011). Selenium effectively inhibits 1,2-dihydroxynaphthalene-induced apoptosis in human lens epithelial cells through activation of PI3-K/Akt pathway. Molecular Vision, 17, 2019–2027.PubMedPubMedCentralGoogle Scholar
  334. Zhu, Y., Lu, X., Wu, D., Cai, S., Li, S., & Teng, X. (2013). The effect of manganese-induced cytotoxicity on mRNA expressions of HSP27, HSP40, HSP60, HSP70 and HSP90 in chicken spleen lymphocytes in vitro. Biological Trace Element Research, 156, 144–152.PubMedCrossRefGoogle Scholar
  335. Zhu, L., Kong, M., Han, Y. P., et al. (2015). Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Canadian Journal of Physiology and Pharmacology, 93, 385–394.PubMedCrossRefGoogle Scholar
  336. Zilaee, M., Ferns, G. A., & Ghayour-Mobarhan, M. (2014). Heat shock proteins and cardiovascular disease. Advances in Clinical Chemistry, 64, 73–115.PubMedCrossRefGoogle Scholar
  337. Zulkifli, I., Che Norma, M. T., Israf, D. A., & Omar, A. R. (2002). The effect of early-age food restriction on heat shock protein 70 response in heat-stressed female broiler chickens. British Poultry Science, 43, 141–145.PubMedCrossRefGoogle Scholar
  338. Zuo, J., Xu, M., Abdullahi, Y. A., Ma, L., Zhang, Z., & Feng, D. (2015). Constant heat stress reduces skeletal muscle protein deposition in broilers. Journal of the Science of Food and Agriculture, 95, 429–436.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Microbiology and BiochemistryFaculty of Veterinary Medicine, Trakia UniversityStara ZagoraBulgaria
  2. 2.Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. SkryabinMoscowRussia
  3. 3.Department of Animal NutritionFaculty of Agricultural and Environmental Sciences, Szent Istvan UniversityGödölloHungary
  4. 4.Department of Veterinary Expertise and MicrobiologyFaculty of Veterinary Medicine, Sumy National Agrarian UniversitySumyUkraine
  5. 5.Odessa National Academy of Food TechnologyOdessaUkraine
  6. 6.Russian Academy of SciencesMoscowRussia

Personalised recommendations