Expression Dynamics of Heat Shock Proteins (HSP) in Livestock under Thermal Stress

  • Satyaveer Singh Dangi
  • Jaya Bharati
  • Hari Abdul Samad
  • Sanjeev Kumar Bhure
  • Gyanendra Singh
  • Vijai Prakash Maurya
  • Mihir Sarkar
  • Puneet Kumar
Part of the Heat Shock Proteins book series (HESP, volume 12)


Increased ambient temperature increases heat gain by animal which results in heat stress and reduced performance, leading to decreased efficiency of livestock farming. In addition to adaptive biochemical, endocrine and physiological responses, the molecular events that underlie thermotolerance involve the coordinated synthesis of series of heat stress responsive genes, which are responsible for amelioration of deleterious effects of heat stress. Heat Shock Proteins (HSP) are the key players in the adaptive responses to the stress. Intracellular HSP70 confers cytoprotection against thermal and oxidative stress induced cellular damage. Heat Shock Factor (HSF) are the regulatory proteins that is activated by heat stress and control transcription of HSP by binding to Heat Shock Elements (HSE) in HSP genes. Heat shock causes profound modulation in cell signaling pathways that lead to transcription of Nitric oxide synthases (NOS), Toll like receptors and Interleukins. Studies on heat stress in livestock and model animals indicate that TLR 2/4 and IL 2/6 possibly play a vital role via activation of the JAK-STAT pathway. Crosstalk between HSP90, iNOS and eNOS play an important role in mitigating thermal insults and confer thermo tolerance during long term heat stress exposure in livestock. Recent study indicates important roles of Vitamin C, Vitamin E plus Selenium and Betaine as an antioxidant in maintenance of cellular homeostasis. Positive correlation has been found between melatonin and HSP, which explains its importance in heat stress adaptation. These mechanisms possibly work in an orchestrated manner to minimize the devastating effect of heat stress and play pivotal role in the thermotolerance by blocking heat stress-induced cellular death, which helps livestock in acclimation to heat stress.


Betaine Cytoprotection Heat Shock Proteins Heat Stress Immune Response Interleukins Nitric oxide synthases Oxidative Stress Selenium Toll like receptors Vitamin C Vitamin E 



20S proteasome


Apoptotic protease activating factor - 1


Antigen presenting cells


Adenosine triphosphate


Cluster of differentiation 14


Cytotoxic lymphocyte


Damage associated molecular patterns


Dendritic cells


Deoxyribonucleic Acid


Ubiquitin conjugating enzyme


Extracellular heat shock proteins


Endothelial nitric oxide synthases


Fetal bovine serum


Glucose regulated protein 96


Glutathione peroxidase


Glucocorticoid receptor




Human promyelocytic leukemia 60


Heart rate


Heat stress


Heat shock elements;


Heat shock factor;


Heat shock proteins


High temperature protein G


Intracellular heat shock proteins




Inducible nitric oxide synthases


Janus Kinase – signal transductor and activator of transcription




Lipoteichoic acid


Mitogen activated protein kinase




Messenger ribonucleic acid


Nuclear factor kappa-light-chain-enhancer of activated B cells


Non-heat stressed


Natural killer


Nitric oxide


Nitric oxide synthases




Pathogen associated molecular patterns


Professional antigen presenting cells


Peripheral blood mononuclear cells


Pattern recognition receptors


Quantitative polymerase chain reaction


Receptor interacting serine/threonine protein 1


Reactive nitrogen species


Reactive oxygen species


Respiratory rate


Rectal temperature




Superoxide dismutase


Temperature humidity index


Toll like receptors


Transition metal ions


Tumor necrosis factor-α






Professional antigen



We thank National Initiative on Climate Resilient Agriculture (NICRA) and Director, Indian Veterinary Research Institute, Izatnagar, India for providing funds for the work.


  1. Abe, M., Itoh, M. T., Miyata, M., Ishikawa, S., & Sumi, Y. (1999). Detection of melatonin, its precursors and related enzyme activities in rabbit lens. Experimental Eye Research, 68, 255–262.PubMedCrossRefGoogle Scholar
  2. Abilay, T. A., Johnson, H. D., & Madan, M. (1975). The influence of environmental heat on peripheral plasma progesterone and cortisol during the bovine oestrous cycle. Journal of Dairy Science, 58, 1836–1840.Google Scholar
  3. Adrie, C., Richter, C., & Bachelet, M. (2000). Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes. The American Journal of Physiology, 279, 452–460.CrossRefGoogle Scholar
  4. Akerfelt, M., Trouillet, D., Mezger, V., & Sistonen, L. (2007). Heat shock factors at a crossroad between stress and development. Annals of the New York Academy of Sciences, 1391, 1–13.Google Scholar
  5. Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: Structure, function and inhibition. The Biochemical Journal, 357, 593–615.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ali, E.M.M., Soha, H.M. and Mohamed, T.M. (2012) Nitric oxide synthase and oxidative stress: Regulation of nitric oxide synthase. In: Volodymyr Lushchak (ed.) Oxidative stress-molecular mechanisms and biological effects. InTech, 61–72. ISBN: 978-953-51-0554-1.Google Scholar
  7. Altan, O., Pabuccuoglu, A., Altan, A., Konyalioglu, S., & Bayraktar, H. (2003). Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science, 44(4), 545–550.PubMedCrossRefGoogle Scholar
  8. Amici, C., Sistonen, L., Santoro, M. G., & Morimoto, R. I. (1992). Anti-proliferative prostaglandins activate heat shock transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 89, 6227–6231.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ananthan, J., Goldberg, A. L., & Voellmy, R. (1986). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science, 232, 522–524.PubMedCrossRefGoogle Scholar
  10. Aneja, R., Odoms, K., Dunsmore, K., Shanly, T. P., & Wong, H. R. (2006). Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. Journal of Immunology, 177, 7184–7192.CrossRefGoogle Scholar
  11. Arnaud, C., Laubriet, A., Joyeux, M., Godin-Ribuot, D., Rochette, L., Demenge, P., & Ribuot, C. (2001). Role of nitric oxide synthases in the infarct size-reducing effect conferred by heat stress in isolated rat hearts. British Journal of Pharmacology, 132, 1845–1851.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Aschner, J. L., Foster, S. L., Kaplowitz, M., Zhang, Y., Zeng, H., & Fike, C. D. (2007). Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 292, L1515–L1525.PubMedCrossRefGoogle Scholar
  13. Asea, A. (2006). Initiation of the immune response by extracellular Hsp72: Chaperokine activity of Hsp72. Current Immunol Reviews, 209, 215.Google Scholar
  14. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., & Calderwood, S. K. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 6, 435–442.PubMedCrossRefGoogle Scholar
  15. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., & Calderwood, S. K. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034.PubMedCrossRefGoogle Scholar
  16. Bakau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366.CrossRefGoogle Scholar
  17. Barchas, J., DaCosta, F., & Spector, S. (1967). Acute pharmacology of melatonin. Nature, 214, 919–920.PubMedCrossRefGoogle Scholar
  18. Barrios, C., Georgopoulos, C., & Lambert, P. H. (1994). Heat shock proteins as carrier molecules: In vivo helper effect mediated by Escherichia coli GroEL and DnaK proteins requires cross-linking with antigen. Clinical and Experimental Immunology, 98, 229–233.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Basu, S., Binder, R. J., Suto, R., Anderson, K. M., & Srivastava, P. K. (2000). Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-B pathway. International Immunology, 12(11), 1539–1546.Google Scholar
  20. Bharati, J. (2015). Expression dynamics of major heat stress induced genes and possible crosstalk between them in Tharparkar cattle. MVSc thesis. Indian Veterinary Research institute Izatnagar Bareilly Uttarpradesh India.Google Scholar
  21. Bharati, J., Dangi, S. S., Chouhan, V. S., Mishra, S. R., Bharti, M. K., Verma, V., & Bag, S. (2017a). Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle. International Journal of Biometeorology, 61(6), 1017–1027.PubMedCrossRefGoogle Scholar
  22. Bharati, J., Dangi, S. S., Bag, S., Maurya, V. P., Singh, G., Kumar, P., & Sarkar, M. (2017b). Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle. International Journal of Biometeorology, 61, 1–9.Google Scholar
  23. Bharati, J., Dangi, S. S., Mishra, S. R., Chouhan, V. S., Verma, V., Shankar, O., Bharti, M. K., Paul, A., Mahato, D. K., Rajesh, G., Singh, G., Maurya, V. P., Bag, S., Kumar, P., & Sarkar, M. (2017c). Expression analysis of toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure. Journal of Thermal Biology, 65, 48–56.PubMedCrossRefGoogle Scholar
  24. Bianchi, M. E. (2007). DAMPs, PAMPs and alarmins: All we need to know about danger. Journal of Leukocyte Biology, 81(1), 1–5.PubMedCrossRefGoogle Scholar
  25. Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J., Lowe, E. R., Kamada, Y., Pratt, W. B., & Osawa, Y. (2002). HSP90 is required for heme binding and activation of aponeuronal nitric-oxide synthase: Geldanamycin-mediated oxidant generation is unrelated to any action of hsp90. The Journal of Biological Chemistry, 277, 20504–20509.PubMedCrossRefGoogle Scholar
  26. Binder, R. J., Han, D. K., & Srivastava, P. K. (2000). CD91: A receptor for heat shock protein gp96. Nature Immunology, 1, 151–155.PubMedCrossRefGoogle Scholar
  27. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Blake, M. J., Gershon, D., Fargnoli, J., & Holbrook, N. J. (1990a). Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats. The Journal of Biological Chemistry, 25, 15275–15279.Google Scholar
  29. Blake, M. J., Nowak, T. S., & Holbrook, N. J. (1990b). In vivo hyperthermia induces expression of HSP70 mRNA in brain regions controlling the neuroendocrine response to stress. Molecular Brain Research, 8, 89–92.PubMedCrossRefGoogle Scholar
  30. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 91(2), 179–194.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bogdan, C. (2001). Nitric oxide and the immune response. Nature Immunology, 2, 907–916.PubMedCrossRefGoogle Scholar
  32. Bonior, J., Jaworek, J., Konturek, S. J., & Pawlik, W. W. (2005). Increase of heat shock protein gene expression by melatonin in AR42J cells. Journal of Physiology and Pharmacology, 56(3), 471–481.PubMedGoogle Scholar
  33. Boshoff, T., Lombard, F., & Eiselen, R. (2000). Differential basal synthesis of Hsp70/Hsc70 contributes to inter-individual variation in Hsp70/Hsc70 inducibility. Cellular and Molecular Life Sciences, 57, 1317–1325.PubMedCrossRefGoogle Scholar
  34. Broquet, A.H., Thomas, G., Masliah, J., Trugnan, G. and Bachelet, M. (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278, 21601–21606.Google Scholar
  35. Brown, C. R., Hong-Brown, L. Q., Doxsey, S. J., & Welch, W. J. (1996). Molecular chaperones and the centrosome. A role of HSP73 in in centrosomal repair following heat shock treatment. The Journal of Biological Chemistry, 271, 833–840.PubMedCrossRefGoogle Scholar
  36. Buchner, J. (1999). HSP90 & Co. - a holding for folding. Trends in Biochemical Sciences, 24(4), 136–141.PubMedCrossRefGoogle Scholar
  37. Buzzard, K. A., Giaccia, A. J., Killender, M., & Anderson, R. L. (1998). Heat shock protein 72 modulates pathways of stress induced apoptosis. The Journal of Biological Chemistry, 273, 17147–17153.PubMedCrossRefGoogle Scholar
  38. Cabrera, J., Quintana, J., Reiter, R. J., Loro, J., Felix, C., & Estevez, F. (2003). Melatonin prevents apoptosis and enhances HSP27 mRNA expression induced by heat shock in HL-60 cells: Possible involvement of the MT2 receptor. Journal of Pineal Research, 35, 231–238.PubMedCrossRefGoogle Scholar
  39. Calabrese, V., Scapagnini, G., Catalano, C., Bates, T. E., Geraci, D., Pennisi, G., & Giuffrida-Stella, A. M. (2001). Regulation of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: Role of vitamin E. International Journal of Tissue Reactions, 23(4), 127–135.PubMedGoogle Scholar
  40. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B., & Ciocca, D. R. (2006). Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends in Biochemical Sciences, 31(3), 164–172.PubMedCrossRefGoogle Scholar
  41. Calderwood, S. K., Ciocca, D. R., Gray, J. P. J., Zaarur, N., Lepchammer, S., & Sherman, M. Y. (2007). The elevated levels of heat shock proteins in cancer: A suitable case for treatment?. In Heat shock proteins in cancer (pp. 351–366). SpringerGoogle Scholar
  42. Campisi, J., Leem, T. H., & Fleshner, M. (2003). Stress-induced extracellular Hsp-72 is a unconditionally significant danger signal to the immune system. Cell Stress & Chaperones, 8, 272–286.CrossRefGoogle Scholar
  43. Carrillo-Vico, A., Calvo, J. R., Abreu, P., Lardone, P. J., GARCÍA, S., Reiter, R. J., & Guerrero, J. M. (2004). Evidence of melatonin synthesis by human lymphocytes and its physiological significance: Possible role as intracrine, autocrine, and/or paracrine substance. The FASEB Journal, 18(3), 537–539.PubMedCrossRefGoogle Scholar
  44. Catala, A., Zvara, A., Puskas, G., & Kitajka, K. (2007). Melatonin-induced gene expression changes and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. Journal of Pineal Research, 42(1), 43–49.PubMedCrossRefGoogle Scholar
  45. Charles, L., Ralph, B. T., William, A. G., & David, W. O. (1978). The pineal complex and thermoregulation. Biological Reviews, 54, 41–72.Google Scholar
  46. Chen, D., Pan, J., Du, B., & Sun, D. (2005a). Induction of the heat shock response in vivo inhibits NF-kappa B activity and protects murine liver from endotoxemia-induced injury. Journal of Clinical Immunology, 25, 452–461.PubMedCrossRefGoogle Scholar
  47. Chen, W., Wang, J., An, H., Zhou, J., Zhang, L., & Cao, X. (2005b). Heat shock up-regulates TLR9 expression in human B cells through activation of ERK and NF-κB signal pathways. Immunology Letters, 98, 153–159.PubMedCrossRefGoogle Scholar
  48. Chen, H., Wu, Y., Zhang, Y., Jin, L., Luo, L., Xue, B., Lu, C., Zhang, X., & Yin, Z. (2006). Hsp70 inhibits lipo-polysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Letters, 580(13), 3145–3152.Google Scholar
  49. Chen, T., Guo, J., Han, C., Yang, M., & Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 Pathway1. Journal of Immunology, 182, 1449–1459.CrossRefGoogle Scholar
  50. Christison, G. I., & Johnson, H. D. (1972). Cortisol turnover in heat stressed cows. Journal of Animal Science, 35, 1005–1010.PubMedCrossRefGoogle Scholar
  51. Ciavarra, R. P., & Simeone, A. (1990). T lymphocyte stress response. I. Induction of heat shock protein synthesis at febrile temperatures is correlated with enhanced resistance to hyperthermic stress but not to heavy metal toxicity or dexamethasone-induced immune-suppression. Cellular Immunology, 129(2), 363–376.PubMedCrossRefGoogle Scholar
  52. Coleman, J. W. (2001). Nitric oxide in immunity and inflammation. International Immunopharmacology, 1, 1397–1406.PubMedCrossRefGoogle Scholar
  53. Collier, N. C., & Schlesinger, M. J. (1986). The dynamic state of heat shock protein in chicken embryo fibroblasts. The Journal of Cell Biology, 103, 1495–1507.PubMedCrossRefGoogle Scholar
  54. Collier, J. L., Abdallah, M. B., Hernandez, L. L., Norgaard, J. V., & Collier, R. J. (2007). Prostaglandins A1 (PGA1) and E1 (PGE1) alter heat shock protein 70 (HSP-70) gene expression in bovine mammary epithelial cells (BMEC). Journal of Dairy Science, 90(Suppl 1), 62. (Abstr).Google Scholar
  55. Craig, S. A. S. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80, 539–549.PubMedCrossRefGoogle Scholar
  56. Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications-A comprehensive review. Pharmacology & Therapeutics, 79(2), 129–168.CrossRefGoogle Scholar
  57. Dangi, S.S. (2014) Comparative efficacy of antioxidants and chemical chaperone on expression profile of HSPs during heat stress in goats (Capra hircus). PhD Thesis awarded by the ICAR- Indian Veterinary Research Institute Deemed University, Izatnagar, PIN-243 122, Bareilly, Uttar Pradesh, India.Google Scholar
  58. Dangi, S. S., Gupta, M., Maurya, D., Yadav, V. P., Panda, R. P., Singh, G., Mohan, N. H., Bhure, S. K., Das, B. C., Bag, S., Mahapatra, R. K., Sharma, G. T., & Sarkar, M. (2012). Expression profile of HSP genes during different seasons in goats (Capra hircus). Tropical Animal Health and Production, 44, 1905–1912.PubMedCrossRefGoogle Scholar
  59. Dangi, S. S., Gupta, M., Nagar, V., Yadav, V. P., Dangi, S. K., Shankar, O., & Sarkar, M. (2014). Impact of short-term heat stress on physiological responses and expression profile of HSPs in Barbari goats. International Journal of Biometeorology, 58(10), 2085–2093.PubMedCrossRefGoogle Scholar
  60. Dangi, S. S., Gupta, M., Dangi, S. K., Chouhan, V. S., Maurya, V. P., Kumar, P., Singh, G., & Sarkar, M. (2015). Expression of HSPs: An adaptive mechanism during long-term heat stress in goats (Capra hircus). International Journal of Biometeorology, 59, 1095–1106.PubMedCrossRefGoogle Scholar
  61. Dangi, S. S., Dangi, S. K., Chouhan, V. S., Verma, M. R., Kumar, P., Singh, G., & Sarkar, M. (2016). Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra Hircus). Gene, 575(2 Pt 2), 543–550. Scholar
  62. Darryn, S., Willoughby, J. W. P., & Matt, N. (2002). Expression of the stress proteins, ubiquitin, HSP72, and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal injury. Archives of Physical Medicine and Rehabilitation, 83, 649–654.CrossRefGoogle Scholar
  63. Deane, E. E., & Woo, N. Y. (2005). Growth hormone increases hsc70/hsp70 expression and protects against apoptosis in whole blood preparations from silver sea bream. Annals of the New York Academy of Sciences, 1040, 288–292.PubMedCrossRefGoogle Scholar
  64. Dehbi, M., Uzzaman, T., Baturcam, E., Eldali, A., Ventura, W., & Bouchama, A. (2012). Toll like receptor 4 and high-mobility group box 1 are critical mediators of tissue injury and survival in a mouse model for heatstroke. PLoS One, 7, 1–9.CrossRefGoogle Scholar
  65. DeJong, P. R., Schadenberg, A. W. L., Jansen, N. J. G., & Prakken, B. J. (2009). Hsp70 and cardiac surgery: Molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress & Chaperones, 14, 117–131.CrossRefGoogle Scholar
  66. Diamant, S., Eliahu, N., Rosenthal, D., & Goloubinoff, P. (2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Journal of Biological Chemistry, 276(43), 39586–39591.PubMedCrossRefGoogle Scholar
  67. DiDomenico, B. J., Bugaisky, G. E., & Lindquist, S. (1982). Heat shock and recovery are mediated by different translational mechanisms. Proceedings of the National Academy of Sciences, 79, 6181–6185.CrossRefGoogle Scholar
  68. DiGiacomo, K., Simpson, S., Leury, B. and Dunshea, F. (2012). Dietary betaine improves physiological responses in sheep under chronic heat load in a dose dependent manner, abstract submitted to the 2012 ADSA-AMPA-ASAS-CSAS-WSASAS Joint Annual Meeting, Phoenix, 15–19 July.Google Scholar
  69. Doklandy, K., Moseley, P. L., & Ma, T. Y. (2006). Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. American Journal of Physiology-Gastrointestinal and Liver Physiology, (290), G204–G212.Google Scholar
  70. Duval, M., Boeuf, F. L., Huot, J., & Gratton, J. P. (2007). Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Molecular Biology of the Cell, 18, 4659–4668.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Dybdahl, B., Wahba, A., Lien, E., Flo, T. H., Waage, A., Qureshi, N., Sellevold, O. F., Espevik, T., & Sundan, A. (2002). Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation, 105, 685–690.PubMedCrossRefGoogle Scholar
  72. Ella, G., Polla, B., Rossi, A., & Santoro, M. G. (1999). Induction of ferritin and heat shock proteins by prostaglandin A1 in human monocytes. European Journal of Biochemistry, 264, 736–745.CrossRefGoogle Scholar
  73. Fargnoli, J., Kunisada, T., Fornace, A. J., Jr., Schneider, E. L., & Holbrook, N. J. (1990). Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proceedings of the National Academy of Sciences, 87, 846–850.CrossRefGoogle Scholar
  74. Febbraio, M. A., Mesa, J. L., Chung, J., Steensberg, A., Keller, C., Nielson, H. B., Krustrup, P., Ott, N. H., Secher, N. H., & Pederson, B. K. (2004). Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress & Chaperones, 9, 390–396.CrossRefGoogle Scholar
  75. Fehrenbach, E., Niess, A. M., Schlotz, E., Passek, F., Dickhuth, H. H., & Northoff, H. (2000). Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. Journal of Applied Physiology, 89, 704–710.PubMedCrossRefGoogle Scholar
  76. Feng, H., Zeng, Y., Graner, M. W., Likhacheva, A., & Katsanis, E. (2003). Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood, 101(1), 245–252.PubMedCrossRefGoogle Scholar
  77. Figueiredo, D., Gertler, A., Cabello, G., Decupere, E., Buyse, J., & Dridi, S. (2007). Leptin downregulates heat shock protein-70 (HSP-70) gene expression in chicken liver and hypothalamus. Cell and Tissue Research, 329, 91–101.PubMedCrossRefGoogle Scholar
  78. Fischer, T. W., Sweatman, T. W., Semak, I., Sayre, R. M., Wortsman, J., & Slominski, A. (2006). Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. The FASEB Journal, 20, 1564–1566.PubMedCrossRefGoogle Scholar
  79. Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E., & Busse, R. (2001). Phosphorylation of Thr regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity. Circulation Research, 88, e68–e75.PubMedCrossRefGoogle Scholar
  80. Fleshner, M., & Johnson, J. D. (2005). Endogenous extracellular heat shock protein 72: Releasing signal(s) and function. International Journal of Hyperthermia, 21, 457–471.PubMedCrossRefGoogle Scholar
  81. Fontana, J., Fulton, D., Chen, Y., Fairchild, T. A., McCabe, T. J., Fujita, N., Tsuruo, T., & Sessa, W. C. (2002). Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circulation Research, 90, 866–873.PubMedCrossRefGoogle Scholar
  82. Freeman, T. J., Maisel, R. H., Goding, G. S., & Cohen, J. I. (1990a). Inhibition of endogenous superoxide dismutase with diethyldithiocarbamate in acute island skin flaps. Otolaryngology and Head and Neck Surgery, 103(6), 938–942.CrossRefGoogle Scholar
  83. Freeman, M. L., Spitz, D. R., & Meredith, M. J. (1990b). Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiation Research, 124, 288–293.PubMedCrossRefGoogle Scholar
  84. Gabai, V., Meriin, A., Yaglom Volloch, V., & Sherman, M. (1998). Role of HSP70 in regulation of stress-kinase JNK: Implications in apoptosis and aging. FEBS Letters, 438, 1–4.PubMedCrossRefGoogle Scholar
  85. Gade, N., Mahapatra, R. K., Sonawane, A., Singh, V. K., Doreswamy, R., & Saini, M. (2010). Molecular characterization of heat shock protein 70-1 gene of goat (Capra hircus). Molecular Biology International.
  86. Galea-Lauri, J., Richarson, A. J., Latchman, D. S., & Katz, D. R. (1996). Increased heat shock protein 90 expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNFa and cycloheximide. Journal of Immunology, 157, 4109–4118.Google Scholar
  87. Ganesan, B., Anandan, R., & Lakshmanan, P. T. (2011). Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress and Chaperones, 16(6), 641–652.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., & Sessa, W. C. (1998). Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 392, 821–824.PubMedCrossRefGoogle Scholar
  89. Gobert, A. P., Bambou, J. C., Werts, C., Balloy, V., Chignard, M., Moran, A. P., & Ferrero, R. L. (2004). Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. Journal of Biological Chemistry, 279(1), 245–250.PubMedCrossRefGoogle Scholar
  90. Gorman, A. M., Heavey, B., Creagh, E., Cotter, T. G., & Samali, A. (1999). Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Letters, 445, 98–102.PubMedCrossRefGoogle Scholar
  91. Govers, R., van der Sluijs, P., van Donselaar, E., Slot, J., & Rabelink, T. J. (2002). Endothelial nitric oxide synthase and its negative regulator caveolin-1 localize to distinct perinuclear organelles. The Journal of Histochemistry and Cytochemistry, 50, 779–788.PubMedCrossRefGoogle Scholar
  92. Gratton, J. P., Fontana, J., O'Connor, D. S., Garcia-Cardena, G., McCabe, T. J., & Sessa, W. C. (2000). Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. The Journal of Biological Chemistry, 275, 22268–22272.PubMedCrossRefGoogle Scholar
  93. Gray, C. C., Amrani, M., Smolenski, R. T., Taylor, G. L., & Yacoub, M. H. (2000). Age dependence of heat stress mediated cardioprotection. The Annals of Thoracic Surgery, 70, 621–626.PubMedCrossRefGoogle Scholar
  94. Guerriero, V., & Raynes, D. A. (1990). Synthesis of heat stress proteins in lymphocytes from livestock. Journal of Animal Science, 68(9), 2779–2783.PubMedCrossRefGoogle Scholar
  95. Hall, D. M., Baumgardner, K. R., Oberley, T. D., & Gisolfi, C. V. (1999). Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. The American Journal of Physiology, 276, G1195–G1203.PubMedGoogle Scholar
  96. Han, A. Y., Zhang, M. H., Zuo, X. L., Zheng, S. S., Zhao, C. F., Feng, J. H., & Cheng, C. (2010). Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poultry Science, 89, 2063–2070.PubMedCrossRefGoogle Scholar
  97. Hansen, P. J. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science, 82, 349–360.PubMedCrossRefGoogle Scholar
  98. Harlow, H. J. (1987). Influence of pineal gland and melatonin on blood flow and evaporative water loss during heat stress in rats. Journal of Pineal Research, 4(2), 147–159.PubMedCrossRefGoogle Scholar
  99. Hecker, J. G., & McGarvey, M. (2011). Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: A review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress & Chaperones, 16, 119–131.CrossRefGoogle Scholar
  100. Hendry, J., & Kola, I. (1991). Thermolability of mouse oocytes is due to lack of expression and/or inducibility of HSP70. Molecular Reproduction and Development, 28, 1–8.CrossRefGoogle Scholar
  101. Heydari, A. R., You, S., Takahashi, R., Gutsmann, A., Sarge, K. D., & Richardson, A. (1995). Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Developmental Genetics, 18, 114–124.CrossRefGoogle Scholar
  102. Hightower, L. E., & Guidon, P. T. (1989). Selective release from cultured cells of heat shock (stress) proteins that resemble glia axon proteins. Journal of Cellular Physiology, 138, 257–266.PubMedCrossRefGoogle Scholar
  103. Hom, L. L., Lee, E. C. H., Apicella, J. M., Wallace, S. D. H., Emmanuel, J. F., Klau, P. Y. S., Marzano, S., Armstrong, L. E., Casa, D. J., & Maresh, C. M. (2012). Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress & Chaperones, 17, 29–39.CrossRefGoogle Scholar
  104. Horowitz, M., Eli-Berchoer, L., Wapinski, I., Friedman, N., & Kodesh, E. (2004). Stress-related genomic responses during the course of heat acclimation and its association with ischemic-reperfusion cross-tolerance. Journal of Applied Physiology, 97, 1496–1507.PubMedCrossRefGoogle Scholar
  105. Huether, G. (1993). The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia, 49, 665–670.PubMedCrossRefGoogle Scholar
  106. Ignarro, L. J. (2002). Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. Journal of Physiology and Pharmacology, 53, 503–514.PubMedGoogle Scholar
  107. Itoh, M. T., Ishizuka, B., Kuribayashi, Y., Amemiya, A., & Sumi, Y. (1999). Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Molecular Human Reproduction, 5(5), 402–408.PubMedCrossRefGoogle Scholar
  108. Iuvone, P. M., & Besharse, J. C. (1983). Regulation of indoleamine N-acetyltransferase activity in the retina: Effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs. Brain Research, 273, 111–119.PubMedCrossRefGoogle Scholar
  109. Iwasaki, S., Nakazawa, K., Sakai, J., Kometani, K., Iwashita, M., Yoshimura, Y., & Maruyama, T. (2005). Melatonin as a local regulator of human placental function. Journal of Pineal Research, 39(3), 261–265.PubMedCrossRefGoogle Scholar
  110. Jaattela, M. (1999). Heat shock proteins as cellular lifeguards. Annals of Medicine, 31, 261–271.PubMedCrossRefGoogle Scholar
  111. Jakob, U., & Buchner, J. (1994). Assisting spontaneity: The role of Hsp90 and small Hsps as molecular chaperones. Trends in Biochemical Sciences, 19, 205–211.PubMedCrossRefGoogle Scholar
  112. Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.PubMedCrossRefGoogle Scholar
  113. Jeffrey, L. S., Sharon, A., ChangMark, J. S., & Ernest, S. C. (2002). Osmotic induction of stress-responsive gene expression in the Lobster Homarus americanus. The Biological Bulletin, 203, 331–337.CrossRefGoogle Scholar
  114. Jimenez, J. S., Jimenez, C. A. J., & Guerrero, J. M. (2005). Melatonin synthesis and melatonin-membrane receptor (MT1) expression during rat thymus development: Role of the pineal gland. Journal of Pineal Research, 39, 77–83.CrossRefGoogle Scholar
  115. John, S. G., Jr., Patrick, M., Lahni, H., Wong, R., & Wheeler, D. S. (2011). Extracellular Heat Shock Proteins: Alarmins for the Host Immune System. The Open Inflammation Journal, 4(Suppl 1-M6), 49–60.Google Scholar
  116. Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M., & Fleshner, M. (2005). Adrenergic receptors mediate stress induced elevations in extracellular Hsp 72. Journal of Applied Physiology, 99, 1789–1795.PubMedCrossRefGoogle Scholar
  117. Ju, X. H., Xu, H. J., Yong, Y. H., An, L. L., Jiao, P. R., & Liao, M. (2014). Heat stress upregulation of toll- like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: An in vivo and in vitro study. Animal, 8(9), 1462–1468.PubMedCrossRefGoogle Scholar
  118. Kalmar, B., & Greensmith, L. (2009). Induction of heat shock proteins for protection against oxidative stress. Advanced Drug Delivery Reviews, 61, 310–318.PubMedCrossRefGoogle Scholar
  119. Kamwanja, L. A., Chase, C. C., Jr., Gutierrez, J. A., Guerriero, V., Jr., Olson, T. A., Hammond, A. C., & Hansen, P. J. (1994). Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status. Journal of Animal Science, 72, 438–444.PubMedCrossRefGoogle Scholar
  120. Kavaliers, M. (1982). Peptides, the pineal gland and thermoregulation. In A. R. Liss (Ed.)., (Liss New York) The pineal and its hormones (pp. 207–215).Google Scholar
  121. Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology, 11, 373–384.PubMedCrossRefGoogle Scholar
  122. Kellogg, D. L., Jr., Crandall, C. G., Liu, Y., Charkoudian, N., & Johnson, J. M. (1998). Nitric oxide and cutaneous active vasodilation during heat stress in humans. Journal of Applied Physiology, 85(3), 824–829.PubMedCrossRefGoogle Scholar
  123. Kelly, D. A., Tiidus, P. M., Houston, M. E., & Noble, E. G. (1996). Effect of vitamin E deprivation and exercise training on induction of HSP70. Journal of Applied Physiology, 81, 2379–2385.PubMedCrossRefGoogle Scholar
  124. Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R. D., Brodie, D. A., & Jackson, M. J. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. The Journal of Physiology, 549(2), 645–652.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80(2), 183–201.CrossRefGoogle Scholar
  126. Kidd, M. T., Ferket, P. R., & Garlich, J. D. (1997). Nutritional and osmoregulatory functions of betaine. World’s Poultry Science Journal, 53, 125–139.CrossRefGoogle Scholar
  127. Kim, Y. M., de Vera, M. E., Watkins, S. C., & Billiar, T. R. (1997). Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-a-induced apoptosis by inducing heat shock protein 70 expression. The Journal of Biological Chemistry, 272, 1402–1411.PubMedCrossRefGoogle Scholar
  128. Kimura, A., Naka, T., Muta, T., Takeuchi, O., Akira, S., Kawase, I., & Kishimoto, T. (2005). Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proceedings of the National Academy of Sciences of the United States of America, 47, 17089–17094.CrossRefGoogle Scholar
  129. King, Y. T., Lin, C. S., Lin, J. H., & Lee, W. C. (2002). Whole-body hyperthermia-induced thermo-tolerance is associated with the induction of heat shock protein 70 in mice. The Journal of Experimental Biology, 205, 273–278.PubMedGoogle Scholar
  130. Kishore, A., Sodhi, M., Khate, K., Kapila, N., Kumari, P., & Mukesh, M. (2013). Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Molecular and Cellular Probes, 27(3–4), 140–144.PubMedCrossRefGoogle Scholar
  131. Klandorf, H., Scanes, C. G., Sommerville, B. A., Sumner, R., & Sharp, P. J. (1978). The effect of pinealectomy on the concentrations of plasma thyroid hormones during a 24 hour period of darkness in immature chickens. IRCS Journal of Medical Science, 6, 549.Google Scholar
  132. Knauf, U., Newton, E. M., Kyriakis, J., & Kingston, R. E. (1996). Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes & Development, 10, 2782–2793.CrossRefGoogle Scholar
  133. Kotera, Y., Shimizu, K., & Mule, J. J. (2001). Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Research, 61(22), 8105–8109.PubMedGoogle Scholar
  134. Kregel, K. C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology, 92, 2177–2186.PubMedCrossRefGoogle Scholar
  135. Kristensen, T. N., Løvendahl, P., Berg, P., & Loeschcke, V. (2004). Hsp 72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress & Chaperones, 9, 143–149.CrossRefGoogle Scholar
  136. Kunisawa, J., & Shastri, N. (2006). HSP90 alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity, 24, 523–534.PubMedCrossRefGoogle Scholar
  137. Kvetnoy, I. M. (1999). Extrapineal melatonin: Location and role within diffuse neuroendocrine system. The Histochemical Journal, 31, 1–12.PubMedCrossRefGoogle Scholar
  138. Lacetera, N., Bernabucci, U., Scalia, D., Basirico, L., Morera, P., & Nardone, A. (2006). Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. Journal of Dairy Science, 89, 4606–4612.PubMedCrossRefGoogle Scholar
  139. Lanks, K. W. (1986). Modulators of the eukaryotic heat shock response. Experimental Cell Research, 165, 1–10.PubMedCrossRefGoogle Scholar
  140. Lauridsen, C., Bertelsen, G., & Jakobsen, K. (1997). Will supplementation of vitamin C to poultry feed improve the quality of poultry meat? Meat Focus International, 54(11), 185–186.Google Scholar
  141. Lee, Y. H., Giraud, J., Davis, R. J., & White, M. F. (2003). c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. The Journal of Biological Chemistry, 278(5), 2896–2902.PubMedCrossRefGoogle Scholar
  142. Lee, J. F., Wang, D., Hsu, J. F., & Chen, H. I. (2008). Oxidative and Nitrosative mediators in hepatic injury caused by whole body hyperthermia in rats. The Chinese Journal of Physiology, 51(2), 85–93.PubMedGoogle Scholar
  143. Lerner, A. B., Case, J. D., & Heinzelmann, R. V. (1958). Structure of melatonin. Journal of the American Chemical Society, 81, 6084–6085.CrossRefGoogle Scholar
  144. Lewis, J., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., & Liu, Z. G. (2000). Disruption of Hsp90 function results in degradation of the death domain kinase, Receptor-Interacting Protein (RIP) and blockage of tumor necrosis factor-induced nuclear factorkappaB activation. The Journal of Biological Chemistry, 275, 10519–10526.PubMedCrossRefGoogle Scholar
  145. Li, G., Ali, I. S., & Currie, R. W. (2006). Insulin induces myocardial protection and Hsp70 localization to plasma membranes in rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 291, H1709–H1721.Google Scholar
  146. Lindquist, S. (1993). In J. Ilan (Ed.), Autoregulation of the heat shock response in translational regulation of gene expression (2nd ed., pp. 279–320). New York: Plenum.CrossRefGoogle Scholar
  147. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.PubMedCrossRefGoogle Scholar
  148. Liu, Y. L., Hui, B., & Chi, S. M. (2007). The effect of compound nutrients on stress-induced changes in serum IL-2, IL-6 and TNF-a levels in rats. Cytokine, 37, 14–21.PubMedCrossRefGoogle Scholar
  149. Liu, Y. X., Li, D. Q., Cui, Q. W., Shi, H. X., & Wang, G. I. (2010). Analysis of HSP70 mRNA level and association between linked microsatellaite loci and heat tolerance traits in dairy cows. Yi Chuan, 32(9), 935–941.Google Scholar
  150. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Luo, S., Wang, T., Qin, H., Lei, H., & Xia, Y. (2011). Obligatory role of heat shock protein 90 in iNOS induction. American Journal of Physiology. Cell Physiology, 301, C227–C233.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mahato, D.K. (2014) Assessment of physio-biochemical responses and expression profile of TLR and HSP genes during heat stress in calves. MVSc thesis Indian Veterinary Research Institute, Izzatnagar, Uttar Pradesh India p 59.Google Scholar
  153. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004). Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comparative Biochemistry and Physiology. B, 137, 35–42.CrossRefGoogle Scholar
  154. Mambula, S. S., & Calderwood, S. K. (2006). Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. Journal of Immunology, 177(11), 7849–7857.CrossRefGoogle Scholar
  155. Marczynski, T. J., Yamaguchi, N., Ling, G. M., & Grodzinska, L. (1964). Sleep induced by the administration of melatonin to the hypothalamus in unrestrained cats. Experientia, 20, 435–437.PubMedCrossRefGoogle Scholar
  156. Marini, M., Frabetti, F., Musiani, D., & Franceschi, C. (1996). Oxygen radicals induce stress proteins and tolerance to oxidative stress in human lymphocytes. International Journal of Radiation Biology, 70, 337–350.PubMedCrossRefGoogle Scholar
  157. Marshall, H. C., Ferguson, R. A., & Nimmo, M. A. (2006). Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot humidenvironment. Cell Stress & Chaperones, 11, 129–134.CrossRefGoogle Scholar
  158. Martin, X. D., Malina, H. Z., Brennan, M. C., Hendrickson, P. H., & Lichter, P. R. (1992). The ciliary body – the third organ found to synthesize indoleamines in humans. European Journal of Ophthalmology, 2, 67–72.PubMedGoogle Scholar
  159. Mathew, A., Mathur, S. K., Jolly, C., Fox, S. G., Kim, S., & Morimoto, R. I. (2001). Stress-specific activation and repression of heat shock factors 1 and 2. Molecular and Cellular Biology, 21, 7163–7171.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Matz, J. M., LaVoi, K. P., & Blake, M. J. (1996). Adrenergic regulation of the heat shock response in brown adipose tissue. The Journal of Pharmacology and Experimental Therapeutics, 277, 1751–1758.PubMedGoogle Scholar
  161. Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296, 301–305.PubMedCrossRefGoogle Scholar
  162. Maurya, D., Gupta, M., Dangi, S. S., Yadav, V. P., Mahapatra, R. K., & Sarkar, M. (2013). Expression of genes associated with thermal stress in goats during different seasons. The Indian Journal of Animal Sciences, 83, 604–608.Google Scholar
  163. Mcdowell, L. R. (1989). Vitamins in animal nutrition. In L. R. Mcdowell (Ed.), Comparative aspects to human nutrition Vitamin E (pp. 93–131). London: Academic.Google Scholar
  164. Menendez, P. A., Howes, K. A., Gonzalez, B. A., & Reiter, R. J. (1987). N-acetyltransferase activity, hydroxyindole Omethyltransferase activity, and melatonin levels in the Harderian glands of the female Syrian hamster: Changes during the light : Dark cycle and the effect of 6-parachlorophenylalanine administration. Biochemical and Biophysical Research Communications, 145, 1231–1238.CrossRefGoogle Scholar
  165. Menzies, M., & Ingham, A. (2006). Identification and expression of toll-like receptors 1–10 in selected bovine and ovine tissues. Veterinary Immunology and Immunopathology, 109, 23–30.PubMedCrossRefGoogle Scholar
  166. Merendino, A. M., Bucchieri, F., & Campanella, C. (2010). Hsp60 is actively secreted by human tumor cells. PLoS One, 5(2), e9247.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Mishra, A., Hooda, O. K., Singh, G., & Meur, S. K. (2010). Influence of induced heat stress on HSP70 in buffalo lymphocytes. Journal of Animal Physiology and Animal Nutrition, 95, 540–544.PubMedCrossRefGoogle Scholar
  168. Miyata, Y., & Yahara, I. (1992). The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. The Journal of Biological Chemistry, 267(10), 7042–7047.PubMedGoogle Scholar
  169. Morano, K. A., & Thiele, D. J. (1999). Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expression, 7, 271–282.PubMedGoogle Scholar
  170. Mori, M. (2007). Regulation of nitric oxide synthesis and apoptosis by Arginase and arginine recycling. The Journal of Nutrition, 137, 1616S–1620S.PubMedCrossRefGoogle Scholar
  171. Morimoto, R. I., & Santoro, M. G. (1998). Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nature Biotechnology, 16, 833–838.PubMedCrossRefGoogle Scholar
  172. Morimoto, R. I., Tissieres, A., & Georgopoulos, C. (1994). Progress and perspectives on the biology of heat shock proteins and molecular chaperones. In The biology of heat shock proteins and molecular chapero, Cold Spring Harbor. NY: Cold Spring Harbor Laboratory Press.Google Scholar
  173. Mortaz, E., Redegeld, F. A., Kijkamp, F. P., Wong, H. R., & Engels, F. (2006). Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through the TLR pathway. Experimental Hematology, 34, 8–18.PubMedCrossRefGoogle Scholar
  174. Mujahid, A., Akiba, Y., Warden, C. H., & Toyomizu, M. (2007). Sequential changes in superoxide production, anion carriers and substrate oxidation in skeletal muscle mitochondria of heat-stressed chickens. FEBS Letters, 581, 3461–3467.PubMedCrossRefGoogle Scholar
  175. Murshid, A., Gong, J., Stevenson, M. A., & Calderwood, S. K. (2011). Heat shock proteins and cancer vaccines: Developments in the past decade and chaperoning in the decade to come. Expert Review of Vaccines, 10, 1553–1568.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nathan, C. (1997). Inducible nitric oxide synthase: What difference does it make? The Journal of Clinical Investigation, 100, 2417–2423.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Niess, A. M., Hartmann, A., Grunert-Fuchs, M., Poch, B., & Speit, G. (1996). DNA damage after exhaustive treadmill running in trained and untrained men. International Journal of Sports Medicine, 17, 397–403.PubMedCrossRefGoogle Scholar
  178. Ohashi, K., Burkat, V., Flohe, S., & Kolb, H. (2000). Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. Journal of Immunology, 164, 558–561.CrossRefGoogle Scholar
  179. Osterloh, A., & Breloer, M. (2008). Heat shock proteins: Linking danger and pathogen recognition. Medical Microbiology and Immunology, 197(1), 1–8.PubMedCrossRefGoogle Scholar
  180. Page, T. J., Sikder, S., Yang, L., Pluta, L., Wolfinger, R. D., Kodadek, T., & Thomas, R. S. (2006). Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Molecular BioSystems, 2, 627–639.PubMedCrossRefGoogle Scholar
  181. Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S. M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E. S., Kufe, D., & Kharbanda, S. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. The EMBO Journal, 19, 4310–4322.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Panjwani, N., Akbari, O., Garcia, S., Brazil, M., & Stockinger, B. (1999). The HSC73 molecular chaperone: Involvement in MHC class II antigen presentation. Journal of Immunology, 163, 1936–1942.Google Scholar
  183. Parsell, D. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437–496.PubMedCrossRefGoogle Scholar
  184. Patir, H., & Upadhyay, R. C. (2007). Interrelationship between Heat Shock Protein 70 (HSP70) and lymphocyte proliferation in thermal exposed buffalo heifers. Italian Journal of Animal Science, 6(Suppl. 2), 1344–1346.CrossRefGoogle Scholar
  185. Patir, H., & Upadhyay, R. C. (2010). Purification, characterization and expression kinetics of heat shock protein 70 from Bubalus bubalis. Research in Veterinary Science, 88, 258–262.PubMedCrossRefGoogle Scholar
  186. Paul, A. (2014). Expression Profile of TLR genes in black Bengal goat during different seasons. MVSc Thesis Indian Veterinary Research Institute Deemed University Izzatnagar Uttar Pradesh, India.Google Scholar
  187. Paul, A., Dangia, S. S., Gupta, M., Singh, J., Thakura, N., Naskar, S., Nanda, P. K., Mohanty, N., Das, A. K., Bandopadhayay, S., Das, B. C., & Sarkar, M. (2015). Expression of TLR genes in black Bengal goat (Capra hircus) during different seasons. Small Ruminant Research, 124, 17–23.CrossRefGoogle Scholar
  188. Petronini, P. G., De Angelis, E. M., Borghetti, A. F., & Wheeler, K. P. (1993). Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. The Biochemical Journal, 293, 553–558.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Pirkkala, L., Nykanen, P., & Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15, 1118–1131.PubMedCrossRefGoogle Scholar
  190. Pockley, G. A. (2001). Heat shock proteins in health and disease: Therapeutic targets or therapeutic agents? Expert Reviews in Molecular Medicine, 9, 1–19.Google Scholar
  191. Pockley, A. G. (2003). Heat shock proteins as regulators of the immune response. Lancet, 362, 469–476.PubMedCrossRefGoogle Scholar
  192. Pritchard, K. A., Jr., Ackerman, A. W., Gross, E. R., Stepp, D. W., Shi, Y., Fontana, J. T., Baker, J. E., & Sessa, W. C. (2001). The Journal of Biological Chemistry, 276, 17621–17624.PubMedCrossRefGoogle Scholar
  193. Pruett, S. B., Zheng, Q., Fan, R., Matthews, K., & Schwab, C. (2004). Acute exposure to ethanol affects toll-like receptor signaling and subsequentresponses: An overview of recent studies. Alcohol, 33, 235–239.PubMedCrossRefGoogle Scholar
  194. Puchala, R., Sahlu, T., Herselman, M. J., Davis, J. J., & Hart, S. P. (1995). Effect of betaine on plasma amino acids in Alpine and Angora kids. Journal of Animal Science, 72(Suppl.1), 77.Google Scholar
  195. Reed, J. C. R. C., & Nicchitta, C. V. (2003). eHSP70 and TLRs Baker-LePainISO: A critical evaluation of the role of peptides in heat shock/ chaperone protein-mediated tumor rejection. Current Opinion in Immunology, 15, 89–94.PubMedCrossRefGoogle Scholar
  196. Renis, M., Cardileb, V., Grassoa, S., Palumboa, M., & Scifoa, C. (2003). Switching off HSP70 and i-NOS to study their role in normal and H2O2-stressed human fibroblasts. Life Sciences, 74, 757–769.PubMedCrossRefGoogle Scholar
  197. Richard, J., Heads, D. M., & David, S. L. (1995). Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. Journal of Molecular and Cellular Cardiology, 27(8), 1669–1678.CrossRefGoogle Scholar
  198. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Cellular and Molecular Life Sciences (CMLS), 18(12), 571–573.CrossRefGoogle Scholar
  199. Rivera, R. E., Christensen, V. L., Edens, F. W., & Wineland, M. J. (2005). Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo). Comparative Biochemistry and Physiology – Part A, 142, 427–432.CrossRefGoogle Scholar
  200. Sahin, K., & Kucuk, O. (2003). Heat stress and dietary vitamin supplementation of poultry diets. Nutrition abstracts and reviews. Series B, Livestock Feeds and Feeding, 73, 41R–50R.Google Scholar
  201. Sahin, N., Onderci, M., Sahin, K., & Smith, M. O. (2003). Melatonin supplementation can ameliorate the detrimental effects of heat stress on performance and carcass traits of Japanese quail. Biological Trace Element Research, 96(1–3), 169–177.PubMedCrossRefGoogle Scholar
  202. Sahin, N., Tuzcu, M., Orhan, C., Onderci, M., Eroksuz, Y., & Sahin, K. (2009). The effects of vitamin C and E supplementation on heat shock protein 70 response of ovary and brain in heat-stressed quail. British Poultry Science, 50(2), 259–265.PubMedCrossRefGoogle Scholar
  203. Salo, D. C., Donovan, C. M., & Davies, K. J. A. (1991). HSP70 and other possible heat shock or oxidative proteins are induced in skeletal muscle, heart and liver during exercise. Free Radical Biology & Medicine, 11, 239–246.CrossRefGoogle Scholar
  204. Sarge, K. D., Murphy, S. P., & Morimoto, R. I. (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Molecular and Cellular Biology, 13, 1392–1407.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Sarkar, M., Das, B. C., Dutta Borah, B. K., Vijay, K., Mohan, K., & Prakash, B. S. (2007). Application of sensitive enzyme immunoassay for determination of cortisol in blood plasma of yaks (Poephagus grunniens L). General and Comparative Endocrinology, 154, 85–90.PubMedCrossRefGoogle Scholar
  206. Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97, 10832–10837.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Satoh, M., Shimoda, Y., Akatsu, T., Ishikawa, Y., Minami, Y., & Nakamura, M. (2006). Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte toll signal in patients with heart failure after acute myocardiac infarction. European Journal of Heart Failure, 8, 810–815.PubMedCrossRefGoogle Scholar
  208. Seabury, C. M., Cargill, E. J., & Womack, J. E. (2007). Sequence variability and protein domain architectures for bovine toll-like receptors 1, 5, and 10. Genomics, 90, 502–515.PubMedCrossRefGoogle Scholar
  209. Sejian, V., & Srivastava, R. S. (2009). Effects of melatonin on adrenal cortical functions of Indian goats under thermal stress. Veterinary Medicine International.
  210. Selkirk, G. A., McLellan, T. M., Wright, H. E., & Rhind, S. G. (2009). Expression of intracellular cytokines, HSP72, and apoptosis in monocyte subsets during exertional heat stress in trained and untrained individuals. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296, R575–R586.PubMedCrossRefGoogle Scholar
  211. Shapiro, Y., Alkan, M., Epstein, Y., Newman, F., & Magazanik, A. (1986). Increase in rat intestinal permeability to endotoxin during hyperthermia. European Journal of Applied Physiology, 55, 410–412.CrossRefGoogle Scholar
  212. Sharma, H. S., Drieu, K., Alm, P., & Westman, J. (2000). Role 434 of nitric oxide in Blood-brain Barrier permeability, brain edema and cell damage following hyperthermic brain injury. In An experimental study using EGB-761 and Gingkolide B pretreatment in the rat, Brain Edema XI (pp. 81–86). Vienna: Springer.Google Scholar
  213. Sharma, S., Ramesh, K., Hyder, I., Uniyal, S., Yadav, V. P., Panda, R. P., Maurya, V. P., Singh, G., Kumar, P., Mitra, A., & Sarkar, M. (2013). Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (Capra hircus) exposed to heat stress. Small Ruminant Research, 112, 216–223.CrossRefGoogle Scholar
  214. Sheikh Hamad, D., García Pérez, A., Ferraris, J. D., Peters, E. M., & Burg, M. (1994). Induction of gene expression by heat shock versus osmotic stress. American Journal of Physiology, 267. (Renal, Fluid, and Electrolyte Physiology 36), 28–34.Google Scholar
  215. Shen, J., Riggs, P. K., Hensley, S. C., Schroeder, L. J., Traner, A. R., Kochan, K. J., Person, M. D., & DiGiovanni, J. (2007). Differential expression of multiple anti-apoptotic proteins in epidermis of IGF-1 transgenic mice as revealed by 2-dimensional gel electrophoresis/mass spectrometry analysis. Molecular Carcinogenesis, 46, 331–340.PubMedCrossRefGoogle Scholar
  216. Sivakumar, A. V. N., Singh, G., & Varshney, V. P. (2010). Antioxidants supplementation on acid base balance during heat stress in goats. Asian-Australasian Journal of Animal Sciences, 23(11), 1462–1468.CrossRefGoogle Scholar
  217. Snoeckx, L. H., Cornelussen, R. N., Van Nieuwenhoven, F. A., Reneman, R. S., & Van der Vusse, G. J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews, 81(4), 1461–1497.PubMedCrossRefGoogle Scholar
  218. Sondermann, H., Becker, T., Mayhew, M., Wieland, F., & Hartl, F. U. (2000). Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biological Chemistry, 381, 1165–1174.PubMedCrossRefGoogle Scholar
  219. Srivastava, P. (2002). Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annual Review of Immunology, 20, 395–425.PubMedCrossRefGoogle Scholar
  220. Stefulj, J., Hortner, M., & Ghosh, M. (2001). Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. Journal of Pineal Research, 30, 243–247.PubMedCrossRefGoogle Scholar
  221. Stocco, C., Callegari, E., & Gibori, G. (2001). Opposite effect of prolactin and prostaglandin F2α on the expression of luteal genes as revealed by rat cDNA expression array. Endocrinology, 142, 4158–4161.PubMedCrossRefGoogle Scholar
  222. Stott, G. H. (1981). What is animal stress and how is it measured. Journal of Animal Science, 52, 150–153.PubMedCrossRefGoogle Scholar
  223. Strassman, R. J., Qualls, C. R., Lisansky, E. J., & Peak, G. T. (1991). Elevated rectal temperature produced by all night bright light is reversed by melatonin infusion in man. Journal of Applied Physiology, 71, 2178–2182.PubMedCrossRefGoogle Scholar
  224. Suzue, K., & Young, R. A. (1996). Heat shock proteins as immunological carriers and vaccines. EXS, 77, 451–465.PubMedGoogle Scholar
  225. Takeda, K., & Akira, S. (2003). Toll receptors and pathogen resistance. Cellular Microbiology, 5, 143–153.PubMedCrossRefGoogle Scholar
  226. Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptor. Annual Review of Immunology, 21, 335–376.PubMedCrossRefGoogle Scholar
  227. Tan, D. X., Manchester, L. C., & Reiter, R. J. (1999). Identification of highly elevated levels of melatonin in bone marrow: Its origin and significance. Biochimica et Biophysica Acta, 1472, 206–214.PubMedCrossRefGoogle Scholar
  228. Tan, D. X., Manchester, L. C., & Hardeland, R. (2003). Melatonin: A hormone, a tissue factor, an autocoid, a paracoid and an antioxidant vitamin. Journal of Pineal Research, 34, 75–78.PubMedCrossRefGoogle Scholar
  229. Tan, D. X., Manchester, L. C., Maria, P., Terron, M. P., Flores, L. J., & Reiter, R. J. (2007). One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research, 42, 28–42.PubMedCrossRefGoogle Scholar
  230. Tan, G. Y., Yang, L., Fu, Y. Q., Feng, J. H., & Zhang, M. H. (2010). Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poultry Science, 89, 115–122.PubMedCrossRefGoogle Scholar
  231. Tavaria, M., Gabriele, T., Kola, I., & Anderson, R. L. (1996). A hitchhiker’s guide to the human Hsp70 family. Cell Stress & Chaperones, 1, 23–28.CrossRefGoogle Scholar
  232. Thaxton, J. P., & Paradue, S. L. (1984). Ascorbic acid and physiological stress. In I. Wegger, F. J. Tagwerkers, & J. Monatgaard (Eds.), Proceedings of the Workshop on Ascorbic Acid in Domestic Animals (pp. 25–31). Copenhagen: The Royal Danish Agric Soc.Google Scholar
  233. Thompson, H. S., Clarkson, P. M., & Scordilis, S. P. (2002). The repeated bout effect and heat shock proteins: Intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. Acta Physiologica Scandinavica, 174, 47–56.PubMedCrossRefGoogle Scholar
  234. Tirumurugaan, K. G., Dhanasekaran, S., Dhinakar Raj, G., Raja, A., Kumanan, K., & Ramaswamy, V. (2010). Differential expression of toll-like receptor mRNA in selected tissues of goat (Capra hircus). Veterinary Immunology and Immunopathology, 133, 296–301.PubMedCrossRefGoogle Scholar
  235. Topbas, O. F., Jehle, R., Sinha, P., & Rüstow, B. (2000). An electrophoretic study of vitamin E status and expression of heat shock proteins in alveolar type II and liver cells. Electrophoresis, 21(17), 3552–3557.PubMedCrossRefGoogle Scholar
  236. Trinklein, N. D., Murray, J. I., Hartman, S. J., Botsein, D., & Myers, R. M. (2004). The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Molecular Biology of the Cell, 15, 1254–1261.PubMedPubMedCentralCrossRefGoogle Scholar
  237. Tytell, M. (2005). Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. International Journal of Hyperthermia, 21(5), 445–455.PubMedCrossRefGoogle Scholar
  238. Tytell, M., Hooper, P., & L. (2001). Heat shock proteins: New keys to the development of cytoprotective therapies. Emerging Therapeutic Targets, 5(2), 267–287.CrossRefGoogle Scholar
  239. Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D., & Wagner, H. (2002). HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. The Journal of Biological Chemistry, 277(17), 15107–15112.PubMedCrossRefGoogle Scholar
  240. Vahanan, B. M., Raj, G. D., Pawar, R. M., Gopinath, V. P., Raja, A., & Thangavelu, A. (2008). Expression profile of toll like receptors in a range of water buffalo tissues (Bubalus bubalis). Veterinary Immunology and Immunopathology, 126, 149–155.PubMedCrossRefGoogle Scholar
  241. Vakkuri, O., Rintamaki, H., & Leppaluoto, J. (1985). Plasma and tissue concentrations of melatonin after midnight light exposure and pinealectomy in the pigeon. The Journal of Endocrinology, 105, 263–268.PubMedCrossRefGoogle Scholar
  242. van Heel, D. A., Ghosh, S., Butler, M., Hunt, K., Foxwell, B. M. J., Mengin-Lecreulx, D., & Playford, R. J. (2005). Synergistic enhancement of Toll-like receptor responses by NOD1 activation. European Journal of Immunology, 35(8), 2471–2476.PubMedCrossRefGoogle Scholar
  243. Vidair, C. A., Huang, R. N., & Doxsey, S. J. (1996). Heat shock causes protein aggregation and reduces protein solubility at the centrosome and other cytoplasmic locations. International Journal of Hyperthermia, 12, 681–695.PubMedCrossRefGoogle Scholar
  244. Vijayan, M. M., Raptis, S., & Sathiyaa, R. (2003). Cortisol treatment affects glucocorticoid receptor and glucocorticoid responsive genes in the liver of rainbow trout. General and Comparative Endocrinology, 132, 256–263.PubMedCrossRefGoogle Scholar
  245. Vikash, C. (2004). Effect of heat stress and follicular dynamics of goat. MVSc Thesis, Indian Veterinary Research Institute, Deemed University, Izatnagar, Uttar Pradesh India.Google Scholar
  246. Voellmy, R. (1994). Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Critical Reviews in Eukaryotic Gene Expression, 4, 357–401.PubMedGoogle Scholar
  247. Wallin Robert, P. A., Andreas, L., Solveig, M. H., Arne, V. B., Rolf, K., & Hans Gustaf, L. (2002). Heat-shock proteins as activators of the innate immune system. Trends in Immunology, 23(3), 130–135.PubMedCrossRefGoogle Scholar
  248. Welc, S. S., Phillips, N. A., Oca-Cossio, J., Wallet, S. M., Chen, D. L., & Clanton, T. L. (2012). Hyperthermia increases interleukin-6 in mouse skeletal muscle. American Journal of Physiology. Cell Physiology, 303, C455–C466.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Welc, S. S., Judge, A. R., & Clanton, T. L. (2013). Skeletal muscle interleukin-6 regulation in hyperthermia. American Journal of Physiology. Cell Physiology, 305, C406–C413.PubMedCrossRefGoogle Scholar
  250. Welch, W. J. (1992). Mammalian stress response: Cell physiology, structure/ function of stress proteins, and implications for medicine and disease. Physiological Reviews, 72, 1063–1081.PubMedCrossRefGoogle Scholar
  251. Welch, W. J., & Framisco, J. R. (1984). Nuclear and nucleolar localization of 72.00 dalton heat shock mammalian cells. The Journal of Biological Chemistry, 259, 4501–4513.PubMedGoogle Scholar
  252. Welch, W.J. and Suhan, J.P. (1986). Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol 103, 2035–2052.Google Scholar
  253. Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nature Reviews. Cancer, 5(10), 761–772.PubMedCrossRefGoogle Scholar
  254. Wiech, H., Buchne, J., Zimmermann, R., & Jakob, U. (1992). HSP90 chaperones protein folding in vitro. Nature, 358(6382), 169–170.PubMedCrossRefGoogle Scholar
  255. Willoughby, D. S., Taylor, M., & Taylor, L. (2003). Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Medicine and Science in Sports and Exercise, 35(12), 2023–2031.PubMedCrossRefGoogle Scholar
  256. Winklhofer-Roob, B. M., Rock, E., Ribalta, J., Shmerling, D. H., & Roob, J. M. (2003). Effects of vitamin E and carotenoid status on oxidative stress in health and disease. Evidence obtained from human intervention studies. Molecular Aspects of Medicine, 24, 391–402.PubMedGoogle Scholar
  257. Winter, A., Alzinger, A., & Ruedi, F. (2007). Assessment of the gene content of the chromosomal regions flanking bovine DGAT1. Genomics, 83, 172–180.CrossRefGoogle Scholar
  258. Wu, C. (1995). Heat shock transcription factors: Structure and regulation. Annual Review of Cell and Developmental Biology, 11, 441–469.PubMedCrossRefGoogle Scholar
  259. Xu, Q., Ganju, L., Fawcett, T. W., & Holbrook, N. J. (1996). Vasopressin-induced heat shock protein expression in renal tubular cells. Laboratory Investigation, 74, 178–187.PubMedGoogle Scholar
  260. Xu, H., Shi, Y., Wang, J., Jones, D., Weilrauch, D., Ying, R., Wakim, B., & Pritchard, K. A., Jr. (2007). A heat shock protein 90 binding domain in endothelial nitric-oxide synthase influences enzyme function. The Journal of Biological Chemistry, 282, 37567–37574.PubMedCrossRefGoogle Scholar
  261. Yadav, V. P., Dangi, S. S., Chouhan, V. S., Gupta, M., Dangi, S. K., Singh, G., Maurya, V. P., Kumar, P., & Sarkar, M. (2016). Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra Hircus). International Journal of Biometeorology, 60, 381–389.PubMedCrossRefGoogle Scholar
  262. Yaglom, Y., Gabai, V., Merrin, A., Mosser, D., & Sherman, M. (1999). The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention of protein damage. The Journal of Biological Chemistry, 274, 20223–20228.PubMedCrossRefGoogle Scholar
  263. Yan, X., Xiu, F., An, H., Wang, X., Wang, J., & Cao, X. (2007). Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sciences, 80, 307–313.PubMedCrossRefGoogle Scholar
  264. Yang, Y. L., Lu, K. T., Tsay, H. J., Lin, C. H., & Lin, M. T. (1998). Heat shock protein expression protects against death following exposure to heatstroke in rats. Neuroscience Letters, 252, 9–12.Google Scholar
  265. Yoshida, M., & Xia, Y. (2003). Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. The Journal of Biological Chemistry, 278, 36953–36958.PubMedCrossRefGoogle Scholar
  266. Yoshimune, K., Yoshimura, T., Nakayama, T., Nishino, T., & Esaki, N. (2002). Hsc62, Hsc56, and GrpE, the third HSP70 chaperone system of Escherichia Coli. Biochemical and Biophysical Research Communications, 293(5), 1389–1395.PubMedCrossRefGoogle Scholar
  267. Zaidi, S., & Banu, N. (2004). Antioxidant potential of vitamins a, E and C in modulating oxidative stress in rat brain. Clin Chem Acta, 340(1–2), 229–233.CrossRefGoogle Scholar
  268. Zarember, K. A., & Godowski, P. J. (2002). Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. Journal of Immunology, 168, 554–561.CrossRefGoogle Scholar
  269. Zhang, Y., Champagne, N., Beitel, L. K., Goodyer, C. G., Trifiro, M., & LeBlanc, A. (2004). Estrogen and androgen protection of human neurons against intracellular amyloid 1–42 toxicity through heat shock protein 70. The Journal of Neuroscience, 24, 5315–5321.PubMedCrossRefGoogle Scholar
  270. Zhou, J., An, H., Xu, H., Liu, S., & Cao, X. (2005). Heat shock up-regulates expression of toll-like receptor-2 and toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology, 114, 522–530.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Satyaveer Singh Dangi
    • 1
  • Jaya Bharati
    • 2
  • Hari Abdul Samad
    • 2
  • Sanjeev Kumar Bhure
    • 3
  • Gyanendra Singh
    • 2
  • Vijai Prakash Maurya
    • 2
  • Mihir Sarkar
    • 2
  • Puneet Kumar
    • 2
  1. 1.Temperate Animal Husbandry DivisionIndian Veterinary Research Institute Campus at MukteshwarMukteshwarIndia
  2. 2.Division of Physiology and ClimatologyIndian Veterinary Research InstituteIzatnagarIndia
  3. 3.Animal Biochemistry DivisionIndian Veterinary Research InstituteIzatnagarIndia

Personalised recommendations