Advertisement

Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans

Chapter
Part of the Heat Shock Proteins book series (HESP, volume 12)

Abstract

Heat shock proteins (HSP) are ubiquitously expressed proteins for cell growth and viability in all living organisms. The expression and regulation system of HSP is the basis of self-defense and stress response for organisms to response to various internal and external environmental stresses. In this review, recent investigations in HSP of crustaceans are described, which examine roles of HSP in protection of crustaceans from various stress influences. The review also summarizes current understanding of HSP functions in crustaceans’ defense response to pathogens infections and other environmental and physiologic stresses. HSP have wilder roles in health of crustaceans, in relation to the immune response to various stressors.

Keywords

Aquaculture disease Crustaceans Environmental stress Heat shock proteins Immunity 

Abbreviations

AHPND

Acute hepatopancreatic necrosis disease

ATP

Adenosine triphosphate

CMNV

Covert mortality nodavirus

DNA

Deoxyribonucleic acid

EDCs

Endocrine disruptor chemicals

H2O2,

Hydrogen peroxide

HSC70

Heat shock cognate 70

HSP

Heat shock proteins

HSP70

Heat shock protein 70

IMNV

Infectious myonecrosis virus

kDa

Kilodaltons

NBD

Nucleotide-terminal ATP binding domain

NLHS

Non-lethal heat shock

NP

4-nonylphenol

OP

4–40-octylphenol

PCP

Pentachlorophenol

ProPO

Prophenoloxidase

SBD

Substrate binding domain

SHSP

Small heat shock proteins

UV

Ultraviolet

WSSV

White spot syndrome virus

YHV

Yellow head virus

γ-HCH

γ-hexachlorocyclohexane

Notes

Acknowledgments

Peng Li’s work on heat shock proteins of crustaceans was funded by the National Natural Science Foundation of China (Grant #31000954), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grants #13KJB180008, #15KJD180005, and #17KJD240001), the Research Fund for the Doctoral Program of Higher Education of China (Grant #20103207120007), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) (Grant #PPZY2015B117), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The author wish to thank Prof. Kaiya Zhou (Nanjing Normal University) for his helpful criticism and valuable discussions on researches.

References

  1. Agarwal, M., Katiyar-Agarwal, S., Sahi, C., Gallie, D. R., & Grover, A. (2001). Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress & Chaperones, 6(3), 219–224.  https://doi.org/10.1379/1466-1268(2001)006<0219:ATHPKA>2.0.CO;2.CrossRefGoogle Scholar
  2. Ahmad, S., Kabir, M., & Hayat, M. (2015). Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou’s general PseAAC. Computer Methods & Programs in Biomedicine, 122(2), 165–174.  https://doi.org/10.1016/j.cmpb.2015.07.005.CrossRefGoogle Scholar
  3. Angthong, P., Roytrakul, S., Jarayabhand, P., & Jiravanichpaisal, P. (2017). Involvement of a tachylectin-like gene and its protein in pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in the shrimp, Penaeus monodon. Developmental & Comparative Immunolog, 76, 229–237.  https://doi.org/10.1016/j.dci.2017.06.011.CrossRefGoogle Scholar
  4. Arockiaraj, J., Vanaraja, P., Easwvaran, S., Singh, A., Othman, R. Y., & Bhassu, S. (2012). Gene expression and functional studies of small heat shock protein 37 (MrHSP37) from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus (IHHNV). Molecular Biology Reports, 39(6), 6671–6682.  https://doi.org/10.1007/s11033-012-1473-7.PubMedCrossRefGoogle Scholar
  5. Arts, M. J., Schill, R. O., Knigge, T., Eckwert, H., Kammenga, J. E., & Köhler, H. R. (2004). Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicology, 13(8), 739–755.  https://doi.org/10.1007/s10646-003-4473-5.PubMedCrossRefGoogle Scholar
  6. Aruda, A. M., Baumgartner, M. F., Reitzel, A. M., & Tarrant, A. M. (2011). Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Journal of Insect Physiology, 57(5), 665–675.  https://doi.org/10.1016/j.jinsphys.2011.03.007.PubMedCrossRefGoogle Scholar
  7. Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta, 1854(4), 291–319.  https://doi.org/10.1016/j.bbapap.2014.12.019.PubMedCrossRefGoogle Scholar
  8. Bao, X. N., Mu, C. K., Zhang, C., Wang, Y. F., Song, W. W., Li, R. H., & Wang, C. L. (2014). mRNA expression profiles of heat shock proteins of wild and salinity-tolerant swimming crabs, Portunus trituberculatus, subjected to low salinity stress. Genetics and Molecular Research, 13(3), 6837–6847.  https://doi.org/10.4238/2014.August.29.5.
  9. Barber, I., Berkhout, B. W., & Zalina, I. (2016). Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Integrative and Comparative Biology, 56(4), 561–572.  https://doi.org/10.1093/icb/icw025.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bar-Lavan, Y., Shemesh, N., & Ben-Zvi, A. (2016). Chaperone families and interactions in metazoa. Essays in Biochemistry, 60(2), 237–253.  https://doi.org/10.1042/EBC20160004.PubMedCrossRefGoogle Scholar
  11. Baruah, K., Norouzitallab, P., Linayati, L., Sorgeloos, P., & Bossier, P. (2014). Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Developmental & Comparative Immunology, 46(2), 470–479.  https://doi.org/10.1016/j.dci.2014.06.004.CrossRefGoogle Scholar
  12. Baruah, K., Norouzitallab, P., Roberts, R. J., Sorgeloos, P., & Bossier, P. (2012). A novel heat-shock protein inducer triggers heat shock protein 70 production and protects Artemia franciscana nauplii against abiotic stressors. Aquaculture, 334-337(1), 152–158.  https://doi.org/10.1016/j.aquaculture.2011.12.015.CrossRefGoogle Scholar
  13. Baruah, K., Norouzitallab, P., Shihao, L., Sorgeloos, P., & Bossier, P. (2013). Feeding truncated heat shock protein 70s protect Artemia franciscana against virulent Vibrio campbellii challenge. Fish & Shellfish Immunology, 34(1), 183–191.  https://doi.org/10.1016/j.fsi.2012.10.025.CrossRefGoogle Scholar
  14. Baruah, K., Ranjan, J., Sorgeloos, P., & Bossier, P. (2010). Efficacy of heterologous and homologous heat shock protein 70s as protective agents to Artemia franciscana challenged with Vibrio campbellii. Fish & Shellfish Immunology, 29(5), 733–739.  https://doi.org/10.1016/j.fsi.2010.07.011.CrossRefGoogle Scholar
  15. Baruah, K., Ranjan, J., Sorgeloos, P., MacRae, T. H., & Bossier, P. (2011). Priming the prophenoloxidase system of Artemia franciscana by heat shock proteins protects against Vibrio campbellii challenge. Fish & Shellfish Immunology, 31(1), 134–141.  https://doi.org/10.1016/j.fsi.2011.04.008.CrossRefGoogle Scholar
  16. Bausero, M. A., Gastpar, R., Multhoff, G., & Asea, A. (2005). Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. The Journal of Immunology, 175(5), 2900–2912.  https://doi.org/10.4049/jimmunol.175.5.2900.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bedulina, D., Meyer, M. F., Gurkov, A., Kondratjeva, E., Baduev, B., Gusdorf, R., & Timofeyev, M. A. (2017). Intersexual differences of heat shock response between two amphipods (Eulimnogammarus verrucosus and Eulimnogammarus cyaneus) in Lake Baikal. Peer J, 5(1), e2864.  https://doi.org/10.7717/peerj.2864.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bedulina, D. S., Timofeyev, M. A., Zimmer, M., Zwirnmann, E., Menzel, R., & Steinberg, C. E. (2010). Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environmental Science and Pollution Research International, 17(2), 261–269.  https://doi.org/10.1007/s11356-009-0222-5.PubMedCrossRefGoogle Scholar
  19. Behnke, J., Hendershot, L., & M. (2014). The large Hsp70 Grp170 binds to unfolded protein substrates in vivo with a regulation distinct from conventional Hsp70s. Journal of Biological Chemistry, 289(5), 2899–2907.  https://doi.org/10.1074/jbc.M113.507491.PubMedCrossRefGoogle Scholar
  20. Boettinger, L., Oeljeklaus, S., Guiard, B., Rospert, S., Warscheid, B., & Becker, T. (2015). The mitochondrial heat shock protein 70 (Hsp70) and Hsp10 cooperate in the formation of Hsp60 complexes. The Journal of Biological Chemistry, 290(18), 11611–11622.  https://doi.org/10.1074/jbc.M115.642017.CrossRefGoogle Scholar
  21. Bohen, S. P., Kralli, A., & Yamamoto, K. R. (1995). Hold ‘em and fold ‘em: Chaperones and signal transduction. Science, 268(5215), 1303–1304.  https://doi.org/10.1126/science.7761850.PubMedCrossRefGoogle Scholar
  22. Boulangé-Lecomte, C., Forget-Leray, J., & Xuereb, B. (2014). Sexual dimorphism in Grp78 and Hsp90A heat shock protein expression in the estuarine copepod Eurytemora affinis. Cell Stress & Chaperones, 19(4), 591–597.  https://doi.org/10.1007/s12192-013-0482-3.CrossRefGoogle Scholar
  23. Bracher, A., & Verghese, J. (2015). The nucleotide exchange factors of Hsp70 molecular chaperones. Frontiers in Molecular Biosciences, 2, 10.  https://doi.org/10.3389/fmolb.2015.00010.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Buchner, J. (1999). HSP90 & Co.—A holding for folding. Trends in Biochemical Sciences, 24(4), 136–141.  https://doi.org/10.1016/S0968-0004(99)01373-0.PubMedCrossRefGoogle Scholar
  25. Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125(3), 443–451.  https://doi.org/10.1016/j.cell.2006.04.014.PubMedCrossRefGoogle Scholar
  26. Burton, R. F. (1986). Ionic regulation in crustacea: the influence of temperature on apparent set points. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 84(1), 135–139.  https://doi.org/10.1016/0300-9629(86)90055-1.CrossRefGoogle Scholar
  27. Capkin, E., Altinok, I., & Karahan, S. (2006). Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere, 64(10), 1793–1800.  https://doi.org/10.1016/j.chemosphere.2005.12.050.PubMedCrossRefGoogle Scholar
  28. Cappello, F., Marino Gammazza, A., Palumbo Piccionello, A., Campanella, C., Pace, A., Conway de Macario, E., & Macario, A. J. (2014). Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opinion on Therapeutic Targets, 18(2), 185–208.  https://doi.org/10.1517/14728222.2014.856417.PubMedCrossRefGoogle Scholar
  29. Carra, S., Alberti, S., Arrigo, P. A., Benesch, J. L., Benjamin, I. J., Boelens, W., Bartelt-Kirbach, B., Brundel, B. J. J. M., Buchner, J., Bukau, B., Carver, J. A., Ecroyd, H., Emanuelsson, C., Finet, S., Golenhofen, N., Goloubinoff, P., Gusev, N., Haslbeck, M., Hightower, L. E., Kampinga, H. H., Klevit, R. E., Liberek, K., Mchaourab, H. S., McMenimen, K. A., Poletti, A., Quinlan, R., Strelkov, S. V., Toth, M. E., Vierling, E., & Tanguay, R. M. (2017). The growing world of small heat shock proteins: from structure to functions. Cell Stress & Chaperones, 22(4), 601–611.  https://doi.org/10.1007/s12192-017-0787-8.CrossRefGoogle Scholar
  30. Cascella, K., Jollivet, D., Papot, C., Léger, N., Corre, E., Ravaux, J., Clark, M. S., & Toullec, J. Y. (2015). Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One, 10(4), e0121642.  https://doi.org/10.1371/journal.pone.0121642.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cechetto, J. D., Soltys, B. J., & Gupta, R. S. (2000). Localization of mitochondrial 60 kD heat shock chaperonin protein (Hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. Journal of Histochemistry & Cytochemistry, 48(1), 45–56.  https://doi.org/10.1177/002215540004800105.CrossRefGoogle Scholar
  32. Celi, M., Filiciotto, F., Parrinello, D., Buscaino, G., Damiano, M. A., Cuttitta, A., D’Angelo, S., Mazzola, S., & Vazzana, M. (2013). Physiological and agonistic behavioural response of Procambarus clarkii to an acoustic stimulus. The Journal of Experimental Biology, 216(Pt 4), 709–718.  https://doi.org/10.1242/jeb.078865.PubMedCrossRefGoogle Scholar
  33. Cerenius, L., Jiravanichpaisal, P., Liu, H. P., & Söderhill, I. (2010). Crustacean immunity. Advances in Experimental Medicine and Biology, 708(92), 239–259.  https://doi.org/10.1007/978-1-4419-8059-5_13.PubMedCrossRefGoogle Scholar
  34. Chang, E. S. (2005). Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins. Integrative and Comparative Biology, 45(1), 43–50.  https://doi.org/10.1093/icb/45.1.43.PubMedCrossRefGoogle Scholar
  35. Chang, X. J., Zheng, C. Q., Wang, Y. W., Meng, C., Xie, X. L., & Liu, H. P. (2016). Differential protein expression using proteomics from a crustacean brine shrimp (Artemia sinica) under CO2-driven seawater acidification. Fish & Shellfish Immunology, 58, 669–677.  https://doi.org/10.1016/j.fsi.2016.10.008.CrossRefGoogle Scholar
  36. Charmantier, G. (1998). Ontogeny of osmoregulation in crustaceans: a review. Invertebrate Reproduction & Development, 33(2–3), 177–190.  https://doi.org/10.1080/07924259.1998.9652630.CrossRefGoogle Scholar
  37. Charmantier, G. (1975). Variations saisonnieres des capacités ionorégulatrices de Sphaeroma serratum (Fabricius, 1787) (Crustacea, Isopoda, Flabellifera). Comparative Biochemistry and Physiology Part A: Physiology, 50(2), 339–345.  https://doi.org/10.1016/0300-9629(75)90023-7.CrossRefGoogle Scholar
  38. Chaurasia, M. K., Nizam, F., Ravichandran, G., Arasu, M. V., Al-Dhabi, N. A., Arshad, A., Elumalai, P., & Arockiaraj, J. (2016). Molecular importance of prawn large heat shock proteins 60, 70 and 90. Fish & Shellfish Immunology, 48, 228–238.  https://doi.org/10.1016/j.fsi.2015.11.034.CrossRefGoogle Scholar
  39. Chebotareva, N., Bobkova, I., & Shilov, E. (2017). Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress & Chaperones, 22(3), 319–343.  https://doi.org/10.1007/s12192-017-0790-0.CrossRefGoogle Scholar
  40. Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 7(1), 156–174.  https://doi.org/10.1186/1471-2164-7-156.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chichester, L., Wylie, A. T., Craft, S., & Kavanagh, K. (2015). Muscle heat shock protein 70 predicts insulin resistance with aging. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 70(2), 155–162.  https://doi.org/10.1093/gerona/glu015.PubMedCrossRefGoogle Scholar
  42. Clare, D. K., & Saibil, H. R. (2013). ATP-driven molecular chaperone machines. Biopolymers, 99(11), 846–859.  https://doi.org/10.1002/bip.22361.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Clegg, J. S., Jackson, S. A., & Popov, V. I. (2000). Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure, and stress proteins. Cell Tissue Research, 301(3), 433–446.PubMedCrossRefGoogle Scholar
  44. Cocci, P., Capriotti, M., Mosconi, G., & Palermo, F. A. (2017). Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. Environmental Research, 158, 616–624.  https://doi.org/10.1016/j.envres.2017.07.024.PubMedCrossRefGoogle Scholar
  45. Colson-Proch, C., Morales, A., Hervant, F., Konecny, L., Moulin, C., & Douady, C. J. (2010). First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression. Cell Stress & Chaperones, 15(3), 259–270.  https://doi.org/10.1007/s12192-009-0139-4.CrossRefGoogle Scholar
  46. Cossins, A. R., & Bowler, K. (1987). Temperature Biology of Animals. New York: Chapman and Hall.CrossRefGoogle Scholar
  47. Costa, E. M., Spritzer, P. M., Hohl, A., & Bachega, T. A. (2014). Effects of endocrine disruptors in the development of the female reproductive tract. Arquivos Brasileiros de Endocrinologia & Metabologia, 58(2), 153–161.CrossRefGoogle Scholar
  48. Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society of London B: Biological Sciences, 283(1824), 20152592.  https://doi.org/10.1098/rspb.2015.2592.CrossRefGoogle Scholar
  49. Cottin, D., Foucreau, N., Hervant, F., & Piscart, C. (2015). Differential regulation of hsp70 genes in the freshwater key species Gammarus pulex (Crustacea, Amphipoda) exposed to thermal stress: effects of latitude and ontogeny. Journal of Comparative Physiology B Biochemical, Systems, and Environmental Physiology, 185(3), 303–313.  https://doi.org/10.1007/s00360-014-0885-1.CrossRefGoogle Scholar
  50. Cowley, J. A., Dimmock, C. M., Spann, K. M., & Walker, P. J. (2012). Family Roniviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (pp. 829–834).Google Scholar
  51. Craig, E. A., Weissman, J. S., & Horwich, A. L. (1994). Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell, 78(3), 365–372.  https://doi.org/10.1016/0092-8674(94)90416-2.PubMedCrossRefGoogle Scholar
  52. Csermely, P., & Kahn, C. R. (1991). The 90 kDa heat shock protein (HSP90) possesses an ATP-binding site and autophosphorylating activity. Journal of Biological Chemistry, 266(8), 4943–4950.PubMedGoogle Scholar
  53. Csermely, P., Kajtár, J., Hollósi, M., Jalsovszky, G., Holly, S., Huynh, T. G., Shiu, Y. L., Nguyen, T. P., Truong, Q. P., Chen, J. C., & Liu, C. H. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish & Shellfish Immunology, 64, 367–382.  https://doi.org/10.1016/j.fsi.2017.03.035.CrossRefGoogle Scholar
  54. Cui, Z., Liu, Y., Luan, W., Li, Q., Wu, D., & Wang, S. (2010). Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab (Portunus trituberculatus). Fish & Shellfish Immunology, 28(1), 56–64.  https://doi.org/10.1016/j.fsi.2009.09.018.CrossRefGoogle Scholar
  55. Cyr, D. M., & Ramos, C. H. (2015). Specification of Hsp70 function by Type I and Type II Hsp40. In G. L. Blatch & A. L. Edkins (Eds.), The Networking of Chaperones by Co-chaperones, Subcellular Biochemistry (Vol. 78, pp. 91–102).  https://doi.org/10.1007/978-3-319-11731-7_4.Google Scholar
  56. de Jong, W. W., Leunissen, J. A., & Voorter, C. E. (1993). Evolution of the α-crystallin/small heat shock protein family. Molecular Biology and Evolution, 10(1), 103–126.  https://doi.org/10.1093/oxfordjournals.molbev.a039992.PubMedGoogle Scholar
  57. Dehedin, A., Maazouzi, C., Puijalon, S., Marmonier, P., & Piscart, C. (2013). The combined effects of water level reduction and an increase in ammonia concentration on organic matter processing by key freshwater shredders in alluvial wetlands. Global Change Biology, 19(3), 763–774.  https://doi.org/10.1111/gcb.12084.PubMedCrossRefGoogle Scholar
  58. Dittmar, K. D., Banach, M., Galigniana, M. D., & Pratt, W. B. (1998). The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. The Journal of Biological Chemistry, 273(13), 7358–7366.  https://doi.org/10.1074/jbc.273.13.7358.PubMedCrossRefGoogle Scholar
  59. Dorts, J., Silvestre, F., Tu, H. T., Tyberghein, A. E., Phuong, N. T., & Kestemont, P. (2009). Oxidative stress, protein carbonylation and heat shock proteins in the black tiger shrimp, Penaeus monodon, following exposure to endosulfan and deltamethrin. Environmental Toxicology and Pharmacology, 28(2), 302–310.  https://doi.org/10.1016/j.etap.2009.05.006.PubMedCrossRefGoogle Scholar
  60. Doyle, S. M., & Wickner, S. (2009). Hsp104 and ClpB: protein disaggregating machines. Trends in Biochemical Sciences, 34(1), 40–48.  https://doi.org/10.1016/j.tibs.2008.09.010.PubMedCrossRefGoogle Scholar
  61. Eddy, F., Powell, A., Gregory, S., Nunan, L. M., Lightner, D. V., Dyson, P. J., Rowley, A. F., & Shields, R. J. (2007). A novel bacterial disease of the European shore crab, Carcinus maenas–molecular pathology and epidemiology. Microbiology, 153(Pt 9), 2839–2849.  https://doi.org/10.1099/mic.0.2007/008391-0.PubMedCrossRefGoogle Scholar
  62. Ehrnsperger, M., Gräber, S., Gaestel, M., & Buchner, J. (1997). Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. The EMBO Journal, 16(2), 221–229.  https://doi.org/10.1093/emboj/16.2.221.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ellis, J. (1987). Proteins as molecular chaperones. Nature, 328(6129), 378–379.  https://doi.org/10.1038/328378a0.PubMedCrossRefGoogle Scholar
  64. Fang, D. A., Wang, Q., He, L., Wang, J., & Wang, Y. (2012). Characterization of heat shock protein 70 in the red claw crayfish (Cherax quadricarinatus): evidence for its role in regulating spermatogenesis. Gene, 492(1), 138–147. https://doi.org/10.1016/j.gene.2011.10.036.
  65. FAO (2014). The state of world fisheries and aquaculture 2014 (SOFIA) Opportunities and challenges. Rome (Italy) 223 pp.Google Scholar
  66. Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61(1), 243–282.  https://doi.org/10.1146/annurev.physiol.61.1.243.PubMedCrossRefGoogle Scholar
  67. Feng, P. M., Chen, W., Lin, H., & Chou, K. C. (2013). iHSP-PseRAAAC: identifying the heat shock protein families using pseudoreduced amino acid alphabet composition. Analytical Biochemistry, 442(1), 118–125.  https://doi.org/10.1016/j.ab.2013.05.024.PubMedCrossRefGoogle Scholar
  68. Feng, P. M., Lin, H., Chen, W., & Zuo, Y. C. (2014). Predicting the types of J-proteins using clustered amino acids. Biomed Research International, 2014(2), 935719.  https://doi.org/10.1155/2014/935719.PubMedPubMedCentralGoogle Scholar
  69. Feng, Q., Wu, G., Liang, T., Ji, H., Jiang, X., Gu, W., & Wang, W. (2010). Pharmacokinetics of oxytetracycline in hemolymph from the Chinese mitten crab, Eriocheir sinensis. Journal of Veterinary Pharmacology and Therapeutics, 12(7), 90–120.  https://doi.org/10.1111/j.1365-2885.2010.01192.Google Scholar
  70. Finka, A., Sharma, S. K., & Goloubinoff, P. (2015). Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Frontiers in Molecular Biosciences, 2, 29.  https://doi.org/10.3389/fmolb.2015.00029.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fontana, A., d'Ippolito, G., Cutignano, A., Romano, G., Lamari, N., Massa Gallucci, A., Cimino, G., Miralto, A., & Ianora, A. (2007). LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on Zooplankton grazers. Chembiochem, 8(15), 1810–1818.  https://doi.org/10.1002/cbic.200700269.PubMedCrossRefGoogle Scholar
  72. Frenkel, L., Dimant, B., Portiansky, E. L., Maldonado, H., & Delorenzi, A. (2008). Both heat shock and water deprivation trigger Hsp70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience Letters, 443(3), 251–256.  https://doi.org/10.1016/j.neulet.2008.07.072.PubMedCrossRefGoogle Scholar
  73. Frenkel, L., Dimant, B., Suárez, L. D., Portiansky, E. L., & Delorenzi, A. (2012). Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience, 201, 239–251.  https://doi.org/10.1016/j.neuroscience.2011.10.052.PubMedCrossRefGoogle Scholar
  74. Fu, D., Chen, J., Zhang, Y., & Yu, Z. (2011). Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge. Fish & Shellfish Immunology, 31(1), 118–125.  https://doi.org/10.1016/j.fsi.2011.04.011.CrossRefGoogle Scholar
  75. Fu, W., Zhang, F., Liao, M., Liu, M., Zheng, B., Yang, H., & Zhong, M. (2013). Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata. Fish & Shellfish Immunology, 34(5), 1306–1314.  https://doi.org/10.1016/j.fsi.2013.02.027.CrossRefGoogle Scholar
  76. Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94(1), 73–82.  https://doi.org/10.1016/S0092-8674(00)81223-4.PubMedCrossRefGoogle Scholar
  77. Grabner, D. S., Schertzinger, G., & Sures, B. (2014). Effect of multiple microsporidian infections and temperature stress on the heat shock protein 70 (hsp70) response of the amphipod Gammarus pulex. Parasites & Vectors, 7(1), 170.  https://doi.org/10.1186/1756-3305-7-170.CrossRefGoogle Scholar
  78. Guisbert, E., Czyz, D. M., Richter, K., McMullen, P. D., & Morimoto, R. I. (2013). Identification of a tissue-selective heat shock response regulatory network. PLoS Genetics, 9(4), e1003466.  https://doi.org/10.1371/journal.pgen.1003466.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Guo, H., Xian, J. A., Li, B., Ye, C. X., Wang, A. L., Miao, Y. T., & Liao, S. A. (2013). Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157(4), 366–371.  https://doi.org/10.1016/j.cbpc.2013.03.001.Google Scholar
  80. Haap, T., Schwarz, S., & Köhler, H. R. (2016). Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress. Aquatic Toxicology, 170, 112–119.  https://doi.org/10.1016/j.aquatox.2015.11.008.PubMedCrossRefGoogle Scholar
  81. Habashy, M. M., & Hassan, M. M. S. (2010). Effects of temperature and salinity on growth and reproduction of the freshwater prawn, Macrobrachium rosenbergii (Crustacea-Decapoda) in Egypt. International Journal of Environmental and Science Education, 1, 83–90.Google Scholar
  82. Habich, C., & Burkart, V. (2007). Heat shock protein 60: regulatory role on innate immune cells. Cellular and Molecular Life Sciences, 64(6), 742–751.  https://doi.org/10.1007/s00018-007-6413-7.PubMedCrossRefGoogle Scholar
  83. Hagn, F., Lagleder, S., Retzlaff, M., Rohrberg, J., Demmer, O., Richter, K., Buchner, J., & Kessler, H. (2011). Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nature Structural & Molecular Biology, 18(10), 1086–1093.  https://doi.org/10.1038/nsmb.2114.CrossRefGoogle Scholar
  84. Hansen, B. H., Altin, D., Rorvik, S. F., Overjordet, I. B., Olsen, A. J., & Nordtug, T. (2011). Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Science of the Total Environment, 409(4), 704–709.  https://doi.org/10.1016/j.scitotenv.2010.10.035.PubMedCrossRefGoogle Scholar
  85. Hansen, B. H., Altin, D., Vang, S. H., Nordtug, T., & Olsen, A. J. (2008). Effects of naphthalene on gene transcription in Calanus finmarchicus (Crustacea: Copepoda). Aquatic Toxicology, 86(2), 157–165.  https://doi.org/10.1016/j.aquatox.2007.10.009.PubMedCrossRefGoogle Scholar
  86. Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: small heat shock proteins and their function in protein homeostasis. The Journal of Biological Chemistry, 427(7), 1537–1548.  https://doi.org/10.1016/j.jmb.2015.02.002.Google Scholar
  87. Haslbeck, M., Weinkauf, S., & Buchner, J. (2015). Regulation of the chaperone function of small Hsps. In R. M. Tanguay & L. E. Hightower (Eds.), The Big Book on Small Heat Shock Proteins (Vol. 8, pp. 155–178). Cham: Springer International Publishing AG.  https://doi.org/10.1007/978-3-319-16077-1_6.CrossRefGoogle Scholar
  88. Hayes, D., Napoli, V., Mazurkie, A., Stafford, W. F., & Graceffa, P. (2009). Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. The Journal of Biological Chemistry, 284(28), 18801–18807.  https://doi.org/10.1074/jbc.M109.011353.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hendrick, J. P., & Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62(62), 349–384.  https://doi.org/10.1146/annurev.bi.62.070193.002025.PubMedCrossRefGoogle Scholar
  90. Hennessy, F., Nicoll, W. S., Zimmermann, R., Cheetham, M. E., & Blatch, G. L. (2005). Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Science, 14(7), 1697–1709.  https://doi.org/10.1110/ps.051406805.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Henry, Y., Piscart, C., Charles, S., & Colinet, H. (2017). Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex. Ecotoxicology and Environmental Safety, 137, 42–48.  https://doi.org/10.1016/j.ecoenv.2016.11.011.PubMedCrossRefGoogle Scholar
  92. Hilario, E., Martin, F. J. M., Bertolini, M. C., & Fan, L. (2011). Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. The Journal of Molecular Biology, 408(1), 74–86.  https://doi.org/10.1016/j.jmb.2011.02.004.PubMedCrossRefGoogle Scholar
  93. Huang, P. Y., Kang, S. T., Chen, W. Y., Hsu, T. C., Lo, C. F., Liu, K. F., & Chen, L. L. (2008). Identification of the small heat shock protein, HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after white spot syndrome virus (WSSV) infection. Fish & Shellfish Immunology, 25(3), 250–257.  https://doi.org/10.1016/j.fsi.2008.06.002.CrossRefGoogle Scholar
  94. Huang, W. J., Leu, J. H., Tsau, M. T., Chen, J. C., & Chen, L. L. (2011). Differential expression of LvHSP60 in shrimp in response to environmental stress. Fish & Shellfish Immunology, 30(2), 576–582.  https://doi.org/10.1016/j.fsi.2010.12.001.CrossRefGoogle Scholar
  95. Huey, R. B. (1991). Physiological consequences of habitat selection. American Naturalist, 137, S91–S115.CrossRefGoogle Scholar
  96. Huynh, T. G., Shiu, Y. L., Nguyen, T. P., Truong, Q. P., Chen, J. C., & Liu, C. H. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish & Shellfish Immunology, 64, 367–382.  https://doi.org/10.1016/j.fsi.2017.03.035.CrossRefGoogle Scholar
  97. Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D’Amato, L., Terrazzano, G., & Smetacek, V. (2004). Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429(6990), 403–407.  https://doi.org/10.1038/nature02526.PubMedCrossRefGoogle Scholar
  98. Jehle, S., Vollmar, B. S., Bardiaux, B., Dove, K. K., Rajagopal, P., Gonen, T., Oschkinat, H., & Klevit, R. E. (2011). N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. The Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6409–6414.  https://doi.org/10.1073/pnas.1014656108.PubMedCrossRefGoogle Scholar
  99. Jiang, S., Qiu, L., Zhou, F., Huang, J., Guo, Y., & Yang, K. (2009). Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon). Molecular Biology Reports, 36(1), 127–134.  https://doi.org/10.1007/s11033-007-9160-9.PubMedCrossRefGoogle Scholar
  100. Junprung, W., Supungul, P., & Tassanakajon, A. (2017). HSP70 and HSP90 are involved in shrimp Penaeus vannamei tolerance to AHPND-causing strain of Vibrio parahaemolyticus after non-lethal heat shock. Fish & Shellfish Immunology, 60, 237–246.  https://doi.org/10.1016/j.fsi.2016.11.049.CrossRefGoogle Scholar
  101. Kahn, C. R., Gergely, P., Jr., & Sӧ ti, C., Mihály, K., & Somogy, J. (1993). ATP induces a conformational change in the 90-kDa heat shock protein (hsp90). Journal of Biological Chemistry, 268(3), 1901–1907.Google Scholar
  102. Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology, 11(8), 579–592.  https://doi.org/10.1038/nrm2941.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kennaway, C. K., Benesch, J. L., Gohlke, U., Wang, L., Robinson, C. V., Orlova, E. V., Saibil, H. R., & Keep, N. H. (2005). Dodecemeric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. The Journal of Molecular Biology, 280(39), 33419–33425.  https://doi.org/10.1074/jbc.M504263200.Google Scholar
  104. Kim, B. M., Rhee, J. S., Jeong, C. B., Seo, J. S., Park, G. S., Lee, Y. M., & Lee, J. S. (2014). Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 166(65), 65–74.  https://doi.org/10.1016/j.cbpc.2014.07.005.Google Scholar
  105. Kim, B. M., Rhee, J. S., Park, G. S., Lee, J., Lee, Y. M., & Lee, J. S. (2011a). Cu/Zn- and Mnsuperoxide dismutase (SOD) from the copepod Tigriopus japonicus: molecular cloning and expression in response to environmental pollutants. Chemosphere, 84(10), 1467–1475.  https://doi.org/10.1016/j.chemosphere.2011.04.043.PubMedCrossRefGoogle Scholar
  106. Kim, R. O., Rhee, J. S., Won, E. J., Lee, K. W., Kang, C. M., Lee, Y. M., & Lee, J. S. (2011b). Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer Brachionus sp. Aquatic Toxicology, 101(3–4), 529–539.  https://doi.org/10.1016/j.aquatox.2010.12.005.PubMedCrossRefGoogle Scholar
  107. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Hart, F. U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry, 82(8), 323–355.  https://doi.org/10.1146/annurev-biochem-060208-092442.PubMedCrossRefGoogle Scholar
  108. King, A. M., & MacRae, T. H. (2012). The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS One, 7(8), e43723.  https://doi.org/10.1371/journal.pone.0043723.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Köhler, H. R., Knödler, C., & Zanger, M. (1999). Divergent kinetics of hsp70 induction in Oniscus asellus (Isopoda) in response to four environmentally relevant organic chemicals (B[a]P, PCB52, g-HCH, PCP): suitability and limits of a biomarker. Archves of Environmental Contamination Toxicology, 36(2), 179–185.  https://doi.org/10.1007/s002449900458.PubMedCrossRefGoogle Scholar
  110. Kozlowsky-Suzuki, B., Koski, M., Hallberg, E., Wallen, R., & Carlsson, P. (2009). Glutathione transferase activity and oocyte development in copepods exposed to toxic phytoplankton. Harmful Algae, 8(3), 395–406.  https://doi.org/10.1016/j.hal.2008.08.025.CrossRefGoogle Scholar
  111. Kregel, K. C. (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. The Journal of Applied Physiology, 92(5), 2177–2186.  https://doi.org/10.1152/japplphysiol.01267.2001.PubMedCrossRefGoogle Scholar
  112. Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., & Buchner, J. (2010). Independent evolution of the core domain and its flanking sequences in small heat shock proteins. The FASEB Journal, 24(10), 3633–3642.  https://doi.org/10.1096/fj.10-156992.PubMedCrossRefGoogle Scholar
  113. Labaude, S., Moret, Y., Cézilly, F., Reuland, C., & Rigaud, T. (2017a). Variation in the immune state of Gammarus pulex (Crustacea, Amphipoda) according to temperature: Are extreme temperatures a stress? Developmental & Comparative Immunology, 76, 25–33.  https://doi.org/10.1016/j.dci.2017.05.013.CrossRefGoogle Scholar
  114. Labaude, S., Rigaud, T., & Cézilly, F. (2017b). Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of social context. Global Change Biology, 23(4), 1415–1424.  https://doi.org/10.1111/gcb.13490.PubMedCrossRefGoogle Scholar
  115. Lacuna, D. G., & Uye, S. I. (2001). Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. Journal of Plankton Research, 23(2), 143–156.  https://doi.org/10.1093/plankt/23.2.143.CrossRefGoogle Scholar
  116. Laganowsky, A., Benesch, J. L., Landau, M., Ding, L., Sawaya, M. R., Cascio, D., Huang, Q., Robinson, C. V., Horwitz, J., & Eisenberg, D. (2010). Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 19(5), 1031–1043.  https://doi.org/10.1002/pro.380.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lauritano, C., Borra, M., Carotenuto, Y., Biffali, E., Miralto, A., Procaccini, G., & Ianora, A. (2011). Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS One, 6(10), e26850.  https://doi.org/10.1371/journal.pone.0026850.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lauritano, C., Procaccini, G., & Ianora, A. (2012). Gene expression patterns and stress response in marine copepods. Marine Environmental Research, 76(3), 22–31.  https://doi.org/10.1016/j.marenvres.2011.09.015.PubMedCrossRefGoogle Scholar
  119. Lee, G. J., & Vierling, E. (2000). A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiology, 122(1), 189–198.  https://doi.org/10.1104/pp.122.1.189.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee, Y. M., Park, T. J., Jung, S. O., Seo, J. S., Park, H. G., Hagiwara, A., Yoon, Y. D., & Lee, J. S. (2006). Cloning and characterization of glutathione S-transferase gene in the intertidal copepod Tigriopus japonicus and its expression after exposure to endocrinedisrupting chemicals. Marine Environmental Research, 62(4), S219–S223.  https://doi.org/10.1016/j.marenvres.2006.04.050.PubMedCrossRefGoogle Scholar
  121. Li, F., Luan, W., Zhang, C., Zhang, J., Wang, B., Xie, Y., Li, S., & Xiang, J. (2009a). Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress & Chaperones, 14(2), 161–172.  https://doi.org/10.1007/s12192-008-0069-6.CrossRefGoogle Scholar
  122. Li, P., Zha, J., Zhang, Z. H., Huang, H., Sun, H., Song, D. X., & Zhou, K. Y. (2009b). Molecular cloning, mRNA expression and characterization of Hsp90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 153(3), 229–235.  https://doi.org/10.1016/j.cbpb.2008.12.017.CrossRefGoogle Scholar
  123. Li, J. T., Han, J. Y., Chen, P., Chang, Z. Q., He, Y. Y., Liu, P., Wang, Q. Y., & Li, J. (2012). Cloning of a heat shock protein 90 (HSP90) gene and expression analysis in the ridgetail white prawn Exopalaemon carinicauda. Fish & Shellfish Immunology, 32(6), 1191–1197.  https://doi.org/10.1016/j.fsi.2012.03.008.CrossRefGoogle Scholar
  124. Li, P., Jiang, X. F., Guo, W. B., Yan, J., & Zhou, K. Y. (2016). Expression patterns of two heat-shock cognate 70 genes during immune responses and larval development of the Chinese mitten crab Eriocheir sinensis. Genetics and Molecular Research, 15(3), gmr.15036319.  https://doi.org/10.4238/gmr.15036319.Google Scholar
  125. Li, Y., Si, R., Feng, Y., Chen, H. H., Zou, L., Wang, E., Zhang, M., Warren, H. S., Sosnovik, D. E., & Chao, W. (2011). Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. The Journal of Biological Chemistry, 286(36), 31308–31319.  https://doi.org/10.1074/jbc.M111.246124.
  126. Liang, P., & MacRae, T. H. (1997). Molecular chaperones and the cytoskeleton. Journal of Cell Science, 110(Pt13), 1431–1440.PubMedGoogle Scholar
  127. Lightner, D. V., Redman, R. M., Pantoja, C., Tang, K. F. J., Noble, B. L., Schofield, P., Mohney, L. L., Nunan, L. M., & Navarro, S. A. (2012). Historic emergence, impact and current status of shrimp pathogens in the Americas. Journal of Invertebrate Pathology, 110(2), 174–183.  https://doi.org/10.1016/j.jip.2012.03.006.PubMedCrossRefGoogle Scholar
  128. Liu, J., Yang, W. J., Zhu, X. J., Karouna-Renier, N. K., & Rao, R. K. (2004). Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress & Chaperones, 9(3), 313–323.  https://doi.org/10.1379/CSC-40R.1.CrossRefGoogle Scholar
  129. Lo, C. F., Ho, C. H., & Peng, S. E. (1996). White spot syndrome baculovirus (WSBV) detected in cultured and capture shrimp, crabs and other arthropods. Diseases of Aquatic Organisms, 27(3), 215–225.  https://doi.org/10.3354/dao027215.CrossRefGoogle Scholar
  130. Loc, N. H., Macrae, T. H., Musa, N., Bin Abdullah, M. D., Abdul Wahid, M. E., & Sung, Y. Y. (2013). Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp. PLoS One, 8(9), e73199.  https://doi.org/10.1371/journal.pone.0073199.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lombardi, J. V., Machado-Neto, J. G., Brossi-Garcia, A. L., Marques, H. L. A., & Kubo, E. (2001). Acute toxicity of the pesticides endosulfan and ametryne to the freshwater prawn Macrobrachium rosenbergii De Man. Bulletin of Environmental Contamination and Toxicology, 67(5), 665–671.  https://doi.org/10.1007/s001280175.PubMedGoogle Scholar
  132. Luan, W., Li, F., Zhang, J., Wen, R., Li, Y., & Xiang, J. (2010). Identification of a novel inducible cytosolic Hsp70 gene in Chinese shrimp Fenneropenaeus chinensis and comparison of its expression with the cognate Hsc70 under different stresses. Cell Stress & Chaperones, 15(1), 83–93.  https://doi.org/10.1007/s12192-009-0124-y.CrossRefGoogle Scholar
  133. Madeira, D., Mendonça, V., Dias, M., Roma, J., Costa, P. M., Larguinho, M., Vinagre, C., & Diniz, M. S. (2015). Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus. Comparative Biochemistry & Physiology Part A: Molecular & Integrative Physiology, 183, 107–115.  https://doi.org/10.1016/j.cbpa.2014.12.039.CrossRefGoogle Scholar
  134. Madeira, D., Narciso, L., Cabral, H. N., Diniz, M. S., & Vinagre, C. (2012). Thermal tolerance of the crab Pachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress & Chaperones, 17(6), 707–716.  https://doi.org/10.1007/s12192-012-0345-3.CrossRefGoogle Scholar
  135. Madeira, D., Narciso, L., Diniz, M. S., & Vinagre, C. (2014). Synergy of environmental variables alters the thermal window and heat shock response: An experimental test with the crab Pachygrapsus marmoratus. Marine Environmental Research, 98(4), 21–28.  https://doi.org/10.1016/j.marenvres.2014.03.011.PubMedCrossRefGoogle Scholar
  136. Mainz, A., Peschek, J., Stavropoulou, M., Back, K. C., Bardiaux, B., Asami, S., Prade, E., Peters, C., Weinkauf, S., Buchner, J., & Reif, B. (2015). The chaperone alphaB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nature Structural & Molecular Biology, 22(11), 898–905.  https://doi.org/10.1038/nsmb.3108.CrossRefGoogle Scholar
  137. Mayer, M. P., & Bukau, B. (1999). Molecular chaperones: The busy life of Hsp90. Current Biology, 9(9), R322–R325.  https://doi.org/10.1016/S0960-9822(99)80203-6.PubMedCrossRefGoogle Scholar
  138. McDonald, E. T., Bortolus, M., Koteiche, H. A., & McHaourab, H. S. (2012). Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. Biochemistry, 51(6), 1257–1268.  https://doi.org/10.1021/bi2017624.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mchaourab, H. S., Godar, J. A., & Stewart, P. L. (2009). Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry, 48(18), 3828–3837.  https://doi.org/10.1021/bi900212j.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M., & Pijanowska, J. (2011). Differential levels of stress proteins (HSP) in male and female Daphnia magna in response to thermal stress: a consequence of sex-related behavioral differences? Journal of Chemical Ecology, 37(7), 670–676.  https://doi.org/10.1007/s10886-011-9969-5.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mogk, A., Kummer, E., & Bukau, B. (2015). Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Frontiers in Molecular Biosciences, 2, 22.  https://doi.org/10.3389/fmolb.2015.00022.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Montagna, M. C. (2011). Effect of temperature on the survival and growth of freshwater prawns Macrobrachium borellii and Palaemonetes argentinus (Crustacea, Palaemonidae). Iheringia Série Zoologia, 101(3), 233–238.  https://doi.org/10.1590/S0073-47212011000200011.CrossRefGoogle Scholar
  143. Morley, N. J., & Lewis, J. W. (2014). Temperature stress and parasitism of endothermic hosts under climate change. Trends in Parasitology, 30(5), 221–227.  https://doi.org/10.1016/j.pt.2014.01.007.PubMedCrossRefGoogle Scholar
  144. Morris, J. P., Thatje, S., & Hauton, C. (2013). The use of stress-70 proteins in physiology: a re-appraisal. Molecular Ecology, 22(6), 1494–1502.  https://doi.org/10.1111/mec.12216.PubMedCrossRefGoogle Scholar
  145. Multhoff, G. (2007). Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods, 43(3), 229–237.  https://doi.org/10.1016/j.ymeth.2007.06.006.PubMedCrossRefGoogle Scholar
  146. Nillegoda, N. B., & Bukau, B. (2015). Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Frontiers in Molecular Biosciences, 2, 57.  https://doi.org/10.3389/fmolb.2015.00057.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Norouzitallab, P., Baruah, K., Muthappa, D. M., & Bossier, P. (2015). Non-lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbellii. Fish & Shellfish Immunology, 42(2), 395–399.  https://doi.org/10.1016/j.fsi.2014.11.017.CrossRefGoogle Scholar
  148. Paine, R. T. (1974). Intertidal community structure: Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15(2), 93–120.  https://doi.org/10.1007/BF00345739.PubMedCrossRefGoogle Scholar
  149. Parsell, D. A., & Lindquist, S. (1993). The function of heatshock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27(1), 437–496.  https://doi.org/10.1146/annurev.ge.27.120193.002253.PubMedCrossRefGoogle Scholar
  150. Pathan, M. M., Latif, A., Das, H., Siddiquee, G. M., & Khan, J. Z. (2010). Heat shock proteins and their clinical implications. Veterinary World, 3(12), 558–560.Google Scholar
  151. Pestana, J. L., Novais, S. C., Norouzitallab, P., Vandegehuchte, M. B., Bossier, P., & De Schamphelaere, K. A. (2016). Non-lethal heat shock increases tolerance to metal exposure in brine shrimp. Environmental Research, 151, 663–670.  https://doi.org/10.1016/j.envres.2016.08.037.PubMedCrossRefGoogle Scholar
  152. Piano, A., Franzellitti, S., Tinti, F., & Fabbri, E. (2005). Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene, 361(1), 119–126.  https://doi.org/10.1016/j.gene.2005.06.034.PubMedCrossRefGoogle Scholar
  153. Picard, D. (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences, 59(10), 1640–1648.  https://doi.org/10.1007/PL00012491.PubMedCrossRefGoogle Scholar
  154. Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(4), 739–761.  https://doi.org/10.1016/S1095-6433(02)00045-4.CrossRefGoogle Scholar
  155. Powell, A., & Rowley, A. F. (2005). Unchanged prevalence of shell disease in the edible crab Cancer pagurus four years after decommissioning of a sewage outfall at Langland Bay, UK. Diseases of Aquatic Organisms, 68(1), 83–87.  https://doi.org/10.3354/dao068083.PubMedCrossRefGoogle Scholar
  156. Qian, Z., Liu, X., Wang, L., Wang, X., Li, Y., Xiang, J., & Wang, P. (2012). Gene expression profiles of four heat shock proteins in response to different acute stresses in shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 156(3–4), 211–220.  https://doi.org/10.1016/j.cbpc.2012.06.001.Google Scholar
  157. Quintana, F. J., & Cohen, I. R. (2005). Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. The Journal of Immunology, 175(5), 2777–2782.  https://doi.org/10.4049/jimmunol.175.5.2777.PubMedCrossRefGoogle Scholar
  158. Ranford, J. C., & Henderson, B. (2002). Chaperonins in disease: mechanisms, models, and treatments. Journal of Clinical Pathology (Molecular Pathology), 55(4), 209–213.  https://doi.org/10.1136/mp.55.4.209.CrossRefGoogle Scholar
  159. Ratheesh, K. R., Nagarajan, N. S., Arunraj, S. P., Sinha, D., Veedin Rajan, V. B., Esthaki, V. K., & D’Silva, P. (2012). HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 28(21), 2853–2855.  https://doi.org/10.1093/bioinformatics/bts520.CrossRefGoogle Scholar
  160. Rhee, J. S., Kim, B. M., Choi, B. S., & Lee, J. S. (2012). Expression pattern analysis of DNA repair-related and DNA damage response genes revealed by 55K oligomicroarray upon UV-B irradiation in the intertidal copepod, Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), 359–368.  https://doi.org/10.1016/j.cbpc.2011.10.005.Google Scholar
  161. Rhee, J. S., Raisuddin, S., Lee, K. W., Seo, J. S., Ki, J. S., Kim, I. C., Park, H. G., & Lee, J. S. (2009). Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(1), 104–112.  https://doi.org/10.1016/j.cbpc.2008.07.009.Google Scholar
  162. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18(12), 571–573.  https://doi.org/10.1007/BF02172188.CrossRefGoogle Scholar
  163. Rivera, A., Santiago, K., Torres, J., Sastre, M. P., & Rivera, F. F. (1999). Bacteria associated with hemolymph in the crab Callinectes bocourti in Puerto Rico. Bulletin of Marine Science, 64(3), 543–548. http://hdl.handle.net/1969.3/23464.Google Scholar
  164. Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. Journal of Fish Diseases, 33(10), 789–801.  https://doi.org/10.1111/j.1365-2761.2010.01183.x.PubMedCrossRefGoogle Scholar
  165. Romano, N., & Zeng, C. (2006). The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture, 260(1–4), 151–162.  https://doi.org/10.1016/j.aquaculture.2006.06.019.CrossRefGoogle Scholar
  166. Rungrassamee, W., Leelatanawit, R., Jiravanichpaisal, P., Klinbunga, S., & Karoonuthaisiri, N. (2010). Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Developmental & Comparative Immunology, 34(10), 1082–1089.  https://doi.org/10.1016/j.dci.2010.05.012.CrossRefGoogle Scholar
  167. Rutherford, S. L., & Lindquist, S. (1998). HSP90 as a capacitor for morphological evolution. Nature, 396(6709), 336–342.  https://doi.org/10.1038/24550.PubMedCrossRefGoogle Scholar
  168. Sanders, B. M. (1993). Stress proteins in aquatic organisms: an environmental perspective. Critical Reviews in Toxicology, 23(1), 49–75.  https://doi.org/10.3109/10408449309104074.PubMedCrossRefGoogle Scholar
  169. Sathyamoorthy, A., Chaurasia, M. K., Arasu, M. V., Al-Dhabi, N. A., Harikrishnan, R., & Arockiaraj, J. (2017). Differences in structure and changes in gene regulation of murrel molecular chaperone HSP family during epizootic ulcerative syndrome (EUS) infection. Fish & Shellfish Immunology, 60, 129–140.  https://doi.org/10.1016/j.fsi.2016.11.046.CrossRefGoogle Scholar
  170. Schlecht, R., Erbse, A. H., Bukau, B., & Mayer, M. P. (2011). Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nature Structural & Molecular Biology, 18(3), 345–351.  https://doi.org/10.1038/nsmb.2006.CrossRefGoogle Scholar
  171. Seo, J. S., Park, T. J., Lee, Y. M., Park, H. G., Yoon, Y. D., & Lee, J. S. (2006). Small heat shock protein 20 gene (Hsp20) of the intertidal copepod Tigriopus japonicus as a possible biomarker for exposure to endocrine disruptors. Bulletin of Environmental Contamination and Toxicology, 76(4), 566–572.  https://doi.org/10.1007/s00128-006-0957-3.PubMedCrossRefGoogle Scholar
  172. Shekhar, M. S., Kiruthika, J., & Ponniah, A. G. (2013). Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress. Fish & Shellfish Immunology, 35(6), 1957–1968.  https://doi.org/10.1016/j.fsi.2013.09.038.CrossRefGoogle Scholar
  173. Sheller, R. A., Smyers, M. E., Grossfeld, R. M., Ballinger, M. L., & Bittner, G. D. (1998). Heat-shock proteins in axoplasm: high constitutive levels and transfer of inducible isoforms from glia. Journal of Comparative Neurology, 396(1), 1–11.  https://doi.org/10.1002/(SICI)1096-9861(19980622)396:1<1::AID-CNE1>3.0.CO;2-4.PubMedCrossRefGoogle Scholar
  174. Shi, J., Fu, M., Zhao, C., Zhou, F., Yang, Q., & Qiu, L. (2016). Characterization and function analysis of Hsp60 and Hsp10 under different acute stresses in black tiger shrimp, Penaeus monodon. Cell Stress & Chaperones, 21(2), 295–312.  https://doi.org/10.1007/s12192-015-0660-6.CrossRefGoogle Scholar
  175. Smolowitz, R. M., Bullis, R. A., & Abt, D. A. (1992). Pathological cuticular changes of winter impoundment shell disease preceding and during intermolt in the American lobster, Homarus americanus. Biology Bulletin, 183(1), 99–112.  https://doi.org/10.2307/1542411.CrossRefGoogle Scholar
  176. Somero, G. N. (2012). The physiology of global change: linking patterns to mechanisms. Annual Review of Marine Science, 4(1), 39–61.  https://doi.org/10.1146/annurev-marine-120710-100935.PubMedCrossRefGoogle Scholar
  177. Sparks, A. K. (1985). Rickettsia, chlamydiae and mycoplasmas of invertebrates. In Synopsis of Invertebrate Pathology (pp. 165–180). Amsterdam: Elsevier.Google Scholar
  178. Spees, J. L., Chang, S. A., Mykles, D. L., Snyder, M. J., & Chang, E. S. (2003). Molt cycle–dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress & Chaperones, 8(3), 258–264.  https://doi.org/10.1379/1466-1268(2003)008<0258:MCMCAP>2.0.CO;2.CrossRefGoogle Scholar
  179. Spees, J. L., Chang, S. A., Mykles, D. L., Snyder, M. J., & Chang, E. S. (2002). Thermal acclimation and stress in the American lobster, Homarus americanus: equivalent temperature shifts elicit unique gene expression patterns for molecular chaperones and polyubiquitin. Cell Stress & Chaperones, 7(1), 97–106.  https://doi.org/10.1379/1466-1268(2002)007<0097:TAASIT>2.0.CO;2.CrossRefGoogle Scholar
  180. Sun, M., Jiang, K., Zhang, F., Zhang, D., Shen, A., Jiang, M., Shen, X., & Ma, L. (2012). Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis. Genetics and Molecular Research, 11(2), 978–986.  https://doi.org/10.4238/2012.April.19.3.
  181. Sun, Y., & MacRae, T. H. (2005). Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences, 62(21), 2460–2476.  https://doi.org/10.1007/s00018-005-5190-4.PubMedCrossRefGoogle Scholar
  182. Sung, Y. Y., Ashame, M. F., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2009a). Feeding Artemia franciscana (Kellogg) larvae with bacterial heat shock protein, protects from Vibrio campbelli infection. Journal of Fish Diseases, 32(8), 675–685.  https://doi.org/10.1111/j.1365-2761.2009.01046.x.PubMedCrossRefGoogle Scholar
  183. Sung, Y. Y., Dhaene, T., Defoirdt, T., Boon, N., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2009b). Ingestion of bacteria over-producing DnaK attenuates Vibrio infection of gnotobiotic Artemia franciscana larvae. Cell Stress & Chaperones, 14(6), 603–609.  https://doi.org/10.1007/s12192-009-0112-2.CrossRefGoogle Scholar
  184. Sung, Y. Y., Liew, H. J., Bolong, A. M. A., Wahid, M. E. A., & MacRae, T. H. (2014). The induction of Hsp70 synthesis by non-lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn). Aquaculture Research, 45(10), 1706–1712.  https://doi.org/10.1111/are.12116.CrossRefGoogle Scholar
  185. Sung, Y. Y., & MacRae, T. H. (2011). Heat shock proteins and disease control in aquatic organisms. Journal of Aquaculture Research & Development, S2(S2), 006.  https://doi.org/10.4172/2155-9546.S2-006.Google Scholar
  186. Sung, Y. Y., Pineda, C., MacRae, T. H., Sorgeloos, P., & Bossier, P. (2008). Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii. Cell Stress & Chaperones, 13(1), 59–66.  https://doi.org/10.1007/s12192-008-0011-y.CrossRefGoogle Scholar
  187. Suss, O., & Reichmann, D. (2015). Protein plasticity underlines activation and function of ATP-independent chaperones. Frontiers in Molecular Biosciences, 2, 43.  https://doi.org/10.3389/fmolb.2015.00043.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Taipale, M., Jarosz, D. F., & Lindquist, S. (2010). Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology, 11(7), 515–528.  https://doi.org/10.1038/nrm2918.PubMedCrossRefGoogle Scholar
  189. Taipale, M., Tucker, G., Peng, J., Krykbaeva, I., Lin, Z. Y., Larsen, B., Choi, H., Berger, B., Gingras, A. C., & Lindquist, S. (2014). A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell, 158(2), 434–448.  https://doi.org/10.1016/j.cell.2014.05.039.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Tangprasittipap, A., Srisala, J., Chouwdee, S., Somboon, M., Chuchird, N., Limsuwan, C., Srisuvan, T., Flegel, T. W., & Sritunyalucksana, K. (2013). The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Veterinary Research, 9(1), 139.  https://doi.org/10.1186/1746-6148-9-139.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Terasawa, K., Minami, M., & Minami, Y. (2005). Constantly updated knowledge of Hsp90. The Journal of Biochemistry, 137(4), 443–447.  https://doi.org/10.1093/jb/mvi056.PubMedCrossRefGoogle Scholar
  192. Thitamadee, S., Prachumwat, A., Srisala, J., Jaroenlak, P., Salachan, P. V., Sritunyalucksana, K., Flegel, T. W., & Itsathitphaisarn, O. (2016). Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture, 452, 69–87.  https://doi.org/10.1016/j.aquaculture.2015.10.028.CrossRefGoogle Scholar
  193. Timofeev, M., Shatilina, Z. M., Bedulina, D. S., Protopopova, M. V., & Kolesnichenko, A. V. (2008). Application of heat shock proteins as stress markers in aquatic organisms using endemic Baikal amphipods as an example. Applied Biochemistry and Microbiology, 44(3), 310–313.  https://doi.org/10.1134/S0003683808030150.CrossRefGoogle Scholar
  194. Tiroli-Cepeda, A. O., Lima, T. B., Balbuena, T. S., Gozzo, F. C., & Ramos, C. H. I. (2014). Structural and functional characterization of the chaperone Hsp70 from sugarcane. Insights into conformational changes during cycling from cross-linking/mass spectrometry assays. Journal of Proteomics, 104, 48–56.  https://doi.org/10.1016/j.jprot.2014.02.004.PubMedCrossRefGoogle Scholar
  195. Tissiéres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of Molecular Biology, 84(3), 389–398.  https://doi.org/10.1016/0022-2836(74)90447-1.PubMedCrossRefGoogle Scholar
  196. Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Journal of Experimental Biology, 213(6), 971–979.  https://doi.org/10.1242/jeb.038034.PubMedCrossRefGoogle Scholar
  197. Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105(1), 45–55.  https://doi.org/10.3354/dao02621.PubMedCrossRefGoogle Scholar
  198. Travis, J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London Series B Biological Science, 270(1514), 467–473.  https://doi.org/10.1098/rspb.2002.2246.CrossRefGoogle Scholar
  199. Tsan, M. F., & Gao, B. (2004). Heat shock protein and innate immunity. Cellular & Molecular Immunology, 1(4), 274–279.  https://doi.org/10.1046/j.1365-2249.2002.01759.x.Google Scholar
  200. Tu, H. T., Silvestre, F., Bernard, A., Douny, C., Phuong, N. T., Tao, C. T., Maghuin-Rogister, G., & Kestemont, P. (2007). Oxidative stress response of black tiger shrimp (Penaeus monodon) to enrofloxacin and to culture system. Aquaculture, 285(1–4), 244–248.  https://doi.org/10.1016/j.aquaculture.2008.08.032.Google Scholar
  201. Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., Haucker, H., & Wagner, H. (2001). Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. Journal of Biological Chemistry, 276(33), 31332–31339.  https://doi.org/10.1074/jbc.M103217200.PubMedCrossRefGoogle Scholar
  202. Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., & Zenteno, E. (2009). Review: Immunity mechanisms in crustaceans. Innate immunity, 15(3), 179–188.  https://doi.org/10.1177/1753425909102876.PubMedCrossRefGoogle Scholar
  203. Velázque-Amado, R. M., Escamilla-Chimal, E. G., & Fanjul-Moles, M. L. (2012). Daily light-dark cycles influence hypoxia-inducible factor 1 and heat shock protein levels in the pacemakers of crayfish. Photochemistry and Photobiology, 88(1), 81–89.  https://doi.org/10.1111/j.1751-1097.2011.01012.x.PubMedCrossRefGoogle Scholar
  204. Vogan, C. L., Costa-Ramos, C., & Rowley, A. F. (2001). A histological study of shell disease syndrome in the edible crab, Cancer pagurus. Diseases of Aquatic Organisms, 47(3), 209–217.  https://doi.org/10.3354/dao047209.PubMedCrossRefGoogle Scholar
  205. Wang, W. (2011). Bacterial diseases of crabs: A review. Journal of Invertebrate Pathology, 106(1), 18–26.  https://doi.org/10.1016/j.jip.2010.09.018.PubMedCrossRefGoogle Scholar
  206. Wang, W., Wen, B., Gasparich, G. E., Zhu, N., Rong, L., & Chen, J. (2004). A spiroplasma associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). Microbiology, 150(Pt 9), 3035–3040.  https://doi.org/10.1099/mic.0.26664-0.PubMedCrossRefGoogle Scholar
  207. Wang, W., Zhu, N. N., Li, Z. R., Gu, Z. F., & Xu, Z. K. (2001). Optical and transmission electron microscope study on nerve tissue infested by rickettsia-like organisms (RLO) in crab, Eriocheir sinensis, suffering from tremor disease. Zoological Research, 22(6), 467–471.Google Scholar
  208. Wegele, H., Muschler, P., Bunck, M., Reinstein, J., & Buchner, J. (2003). Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Journal of Biological Chemistry, 278(41), 39303–39310.  https://doi.org/10.1074/jbc.M305751200.PubMedCrossRefGoogle Scholar
  209. Welch, W. J. (1993). How cells respond to stress. Scientific American, 268(5), 56–64.  https://doi.org/10.1038/scientificamerican0593-56.PubMedCrossRefGoogle Scholar
  210. Welch, W. J. (1992). Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiological Reviews, 72(4), 1063–1081.PubMedCrossRefGoogle Scholar
  211. Wirth, E. F., Lund, S. A., Fulton, M. H., & Scott, G. I. (2001). Determination of acutemortality in adults and sublethal embryo responses of Palaemonetes pugio to endosulfan and methoprene exposure. Aquatic Toxicology, 53(1), 9–18.  https://doi.org/10.1016/S0166-445X(00)00157-0.PubMedCrossRefGoogle Scholar
  212. Wirth, E. F., Lund, S. A., Fulton, M. H., & Scott, G. I. (2002). Reproductive alterations in adult grass shrimp, Palaemonetes pugio following sublethal, chronic endosulfan exposure. Aquatic Toxicology, 59(2), 93–99.  https://doi.org/10.1016/S0166-445X(01)00241-7.PubMedCrossRefGoogle Scholar
  213. Wittung-Stafshede, P., Guidry, J., Horne, B. E., & Landry, S. J. (2003). The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry, 42(17), 4937–4944.  https://doi.org/10.1021/bi027333o.PubMedCrossRefGoogle Scholar
  214. Won, E. J., Han, J., Lee, Y., Kumar, K. S., Shin, K. H., Lee, S. J., Park, H. G., & Lee, J. S. (2015). In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana. Aquatic Toxicology, 165, 1–8.  https://doi.org/10.1016/j.aquatox.2015.05.002. PubMedCrossRefGoogle Scholar
  215. Won, E. J., Lee, Y., Han, J., Hwang, U. K., Shin, K. H., Park, H. G., & Lee, J. S. (2014). Effects of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 165, 60–66.  https://doi.org/10.1016/j.cbpc.2014.06.001.Google Scholar
  216. Wu, L. T., & Chu, K. H. (2008). Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: Evidence for its role in the regulation of vitellogenin synthesis. Molecular Reproduction & Development, 75(5), 952–959.  https://doi.org/10.1002/mrd.20817.CrossRefGoogle Scholar
  217. Xian, J. A., Wang, A. L., Chen, X. D., Gou, N. N., Miao, Y. T., Liao, S. A., & Ye, C. X. (2011). Cytotoxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis. Aquaculture, 317(1–4), 240–244.  https://doi.org/10.1016/j.aquaculture.2011.03.026.CrossRefGoogle Scholar
  218. Xiu, Y. J., Feng, J., Lu, W. Q., Liu, D. D., Wu, T., Zhu, H. X., Liu, P., Li, W. J., Ren, Q., Gu, W., Meng, Q. G., & Wang, W. (2014). Identification of a novel cognate cytosolic Hsp70 gene (MnHsc70-2) from oriental river prawn Macrobrachium nipponense and comparison of its expressions with the first cognate Hsc70 (MnHsc70-1) under different stresses. Cell Stress & Chaperones, 19(6), 949–961.  https://doi.org/10.1007/s12192-014-0519-2.CrossRefGoogle Scholar
  219. Xu, H., & Xu, B. (2002). Isolation and identification of the bacterial pathogens in Eriocheir sinensis. Chinese. Journal of Veterinary Science, 22(2), 137–139.Google Scholar
  220. Xu, Q., & Qin, Y. (2012). Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell Stress & Chaperones, 17(5), 589–601.  https://doi.org/10.1007/s12192-012-0334-6.CrossRefGoogle Scholar
  221. Yamuna, A., Kabila, V., & Geraldine, P. (2000). Expression of heat shock protein 70 in freshwater prawn Macrobrachium malcolmsonii (H. Milne Edwards) follwing exposure to Hg and Cu. Indian Journal of Experimental Biology, 38(9), 921–925.PubMedGoogle Scholar
  222. Yang, Y., Ye, H., Huang, H., Li, S., Liu, X., Zeng, X., & Gong, J. (2013). Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress. Cell Stress & Chaperones, 18(4), 475–482.  https://doi.org/10.1007/s12192-013-0402-6.CrossRefGoogle Scholar
  223. Yébenes, H., Mesa, P., Muňoz, I. G., Montoya, G., & Valpuesta, J. M. (2011). Chaperonins: two rings for folding. Trends in Biochemical Sciences, 36(8), 424–432.  https://doi.org/10.1016/j.tibs.2011.05.003.PubMedCrossRefGoogle Scholar
  224. Young, J. C., Moarefi, I., & Hartl, F. U. (2001). HSP90: A specialized but essential protein-folding tool. The Journal of Cell Biology, 154(2), 267–274.  https://doi.org/10.1083/jcb.200104079.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zhang, Q., Liu, Q., Liu, S., Yang, H., Liu, S., Zhu, L., Yang, B., Jin, J., Ding, L., Wang, X., Liang, Y., Wang, Q., & Huang, J. (2014). A new nodavirus is associated with covert mortality disease of shrimp. Journal of General Virology, 95(Pt 12), 2700–2709.  https://doi.org/10.1099/vir.0.070078-0.PubMedCrossRefGoogle Scholar
  226. Zhang, X. Y., Zhang, M. Z., Zheng, C. J., Liu, J., & Hu, H. J. (2009). Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 150(4), 465–473.  https://doi.org/10.1016/j.cbpc.2009.07.002.CrossRefGoogle Scholar
  227. Zhao, R., Davey, M., Hsu, Y. C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A., & Houry, W. A. (2005). Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the HSP90 chaperone. Cell, 120(5), 715–727.  https://doi.org/10.1016/j.cell.2004.12.024.PubMedCrossRefGoogle Scholar
  228. Zhou, J., Wang, W. N., He, W. Y., Zheng, Y., Wang, L., Xin, Y., Liu, Y., & Wang, A. L. (2010). Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. Journal of Invertebrate Pathology, 103(3), 170–178.  https://doi.org/10.1016/j.jip.2009.12.006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life SciencesNanjing Normal UniversityNanjingChina
  2. 2.Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu ProvinceLianyungangChina

Personalised recommendations