Advertisement

Thermotolerance in Domestic Ruminants: A HSP70 Perspective

  • Iqbal Hyder
  • Manjari Pasumarti
  • Poonooru Ravikanth Reddy
  • Chigurupati Srinivasa Prasad
  • Kamisetty Aswani Kumar
  • Veerasamy Sejian
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 12)

Abstract

Thermal stress is one of the most important factors limiting ruminant production and thermotolerance studies in domestic ruminants has lot of bearing on the identification of prospective biomarkers for thermal stress, especially the heat stress. Heat stress in ruminants is characterized by heat shock response, which is mediated by different types of Heat Shock Proteins (HSP) like HSP60, 70, 90, 110, 27 among which some play a critical role in the initial stages of heat stress and some in the later stages. Among all HSP, HSP70 is considered as cellular thermometer and is indicator of quantum of stress experienced by the cell. At a given amount of stress the expression of HSP70 varies with species, breed, age and type of tissue indicating the variations in thermotolerance. Members of HSP70 family have many homologues like HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA4, HSPA5, HSPA6 & HSPA8 of which some are constitutive and some are inducible. These genes are elevated with heat stress in different type of cells at variable rate. The differences in thermotolerance among species and breeds are correlated with variations in different HSP70 family members. HSP70 can be viewed as prospective biomarker for marker assisted selection in animals in order to have more thermotolerant animals in future as a strategy towards Climate resilient ruminant production.

Keywords

Adaptability Heat Shock Proteins HSP70 Ruminants Thermal stress Thermotolerance 

Abbreviations

ACTH

Adrenocorticotropic hormone

ARD

Average relative deviation

CCI

Comprehensive climate index

CRH

Corticotropin releasing hormone

FAO

Food and Agriculture organization

GM-CSF

Granulocyte-macrophage colony-stimulating factor

HPA

Hypothalamo-pituitary-adrenal

HSE

Heat shock element

HSF

Heat shock factor

HSP

Heat shock protein

IL

Interleukin

IPCC

Intergovernmental Panel on Climate Change

LCT

Lower critical temperature

MEC

Mammary epithelial cells

NO

Nitric oxide

PBMC

Peripheral blood mononuclear cell

PCR

Polymerase chain reaction

RAD

Radiation

RH

Relative humidity

RR

Respiration rate

RT

Rectal temperature

SNP

Single nucleotide polymorphism

TDI

Tuncia Dartos index

THI

Temperature humidity index

TI

Thermal index

TNF

Tumor necrosis factor

TNZ

Thermoneutral zone

UCT

Upper critical temperature

UTR

Untranslated region;

WS

Wind speed

References

  1. Adamowicz, T., Pers, E., & Lechniak, D. (2005). A new SNP in the 3′-UTR of the HSP 70-1 gene in Bos taurus and Bos indicus. Biochemical Genetics, 43, 623–627.PubMedCrossRefGoogle Scholar
  2. Agnew, L. L., & Colditz, I. G. (2008). Development of a method of measuring cellular stress in cattle and sheep. Veterinary Immunology and Immunopathology, 123, 197–204.PubMedCrossRefGoogle Scholar
  3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (Vol. 2002, 4th ed.p. 143). New York: Garland Science.Google Scholar
  4. Al-Dawood, A. (2015). Adoption of agricultural innovations: Investigating current status and barriers to adoption of heat stress management in small ruminants in Jordan. American-Eurasian Journal of Agricultural & Environmental Sciences, 15, 388–398.Google Scholar
  5. Al-Dawood, A. (2017). Effect of heat stress on adipokines and some blood metabolites in goats from Jordan. Animal Science Journal, 88, 356–363.PubMedCrossRefGoogle Scholar
  6. Angelidis, C. E., Lazaridis, I., & Pagoulatos, G. N. (1999). Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. European Journal of Biochemistry, 259, 505–512.PubMedCrossRefGoogle Scholar
  7. Archana, P. R., Aleena, J., Pragna, P., Vidya, M. K., Abdul Niyas, P. A., Bagath, M., Krishnan, G., Maimaran, A., Beena, V., Kurien, E. K., Sejian, V., & Bhatta, R. (2017). Role of heat shock proteins in livestock adaptation to heat stress. Journal of Dairy, Veterinary & Animal Research, 5(1), 127.Google Scholar
  8. Arrigo, A. P. (2007). The cellular networking of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Advances in Experimental Medicine and Biology, 594, 14–26.PubMedCrossRefGoogle Scholar
  9. Arya, R., Mallik, M., & Lakhotia, S. C. (2007). Heat shock genes - integrating cell survival and death. Journal of Biosciences, 32, 595–610.PubMedCrossRefGoogle Scholar
  10. Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., & Calderwood, S. K. (2002). Novel signal transduction pathway utilized by extracellular hsp70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034.PubMedCrossRefGoogle Scholar
  11. Baeta, F. C., Meador, N. F., Shanklin, M. D. (1987) Equivalent temperature index at temperatures above the thermoneutral for lactating cows. In: Meeting of the American Society of Agricultural Engineers, 1987, Baltimore. Proceedings... Baltimore: American Society of Agricultural Engineers.Google Scholar
  12. Bagatell, R., Paine-Murrieta, G. D., Taylor, C. W., Pulcini, E. J., Akinaga, S., Benjamin, I. J., & Whitesell, L. (2000). Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clinical Cancer Research, 6(8), 3312–3318.PubMedGoogle Scholar
  13. Banerjee, D., Upadhyay, R. C., Chaudhary, U. B., Kumar, R., & Singh, S. (2014). Seasonal variation in expression pattern of genes under HSP70: Seasonal variation in expression pattern of genes under HSP70 family in heat and cold-adapted goats (Caprahircus). Cell Stress Chaperones, 19(3), 401–408.PubMedCrossRefGoogle Scholar
  14. Barbe, M. F., Tytell, M., Gower, D. J., & Welch, W. J. (1998). Hyperthermia protects against light damage in the rat retina. Science, 241, 1817–1820.CrossRefGoogle Scholar
  15. Basiricò, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., & Bernabucci, U. (2011). Cellular thermo tolerance is associated with heat shock protein 70 genetic polymorphisms in Holstein lactating cows. Cell Stress & Chaperones, 16(4), 441–448.CrossRefGoogle Scholar
  16. Basu, S. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp70 and calreticulin. Immunity, 14, 303–313.PubMedCrossRefGoogle Scholar
  17. Behl, R., Behl, J., Sadana, D. K., Vijh, R. K., & Tantia, M. S. (2014). Characterization of hsp70 gene promoter for cis acting elements in Indian zebu cattle of Hariana breed. Animal Biotechnology, 25(3), 160–164.PubMedCrossRefGoogle Scholar
  18. Bhanuprakash, V., Singh, U., Sengar, G., Sajjanar, B., Bhusan, B., Raja, T. V., Alex, R., Kumar, S., Singh, R., Kumar, A., Alyethodi, R. R., Kumar, S., & Deb, R. (2016). Differential effect of thermal stress on HSP70 expression, nitricoxide production and cell proliferation among native and crossbred dairy cattle. Journal of Thermal Biology, 59, 18–25.PubMedCrossRefGoogle Scholar
  19. Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Digel, M. S., Bhushan, B., Chauhan, A., Kumar, A., & Singh, G. (2016). Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World, 9(2), 113–117.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boon-Niermeijer, E. K., Souren, J. E., & Wijk, R. (1987). Thermotolerance induced by 2, 4-dinitrophenol. International Journal of Hyperthermia, 3, 133–141.PubMedCrossRefGoogle Scholar
  21. Buffington, D. E., Collazo-arocho, A., Canton, G. H., & Pitt, D. (1981). Black globe-humidity index (BGHI) as a comfort equation for dairy cows. Transactions of the A.S.A.E., 24, 711–771.CrossRefGoogle Scholar
  22. Cai, Y., Liu, Q., Xing, G., Zhou, L., & Yang, Y. (2005). Polymorphism of the promoter region of Hsp70 gene and its relationship with the expression of HSP70mRNA, HSF1mRNA, Bcl 2mrna and Bax-ΑMrna in lymphocytes in peripheral blood of heat shocked dairy cows. Asian-Australasian Journal of Animal Sciences, 18(5), 734–740.CrossRefGoogle Scholar
  23. Chaidanya, K., Soren, N. M., Sejian, V., Bagath, M., Manjunathareddy, G. B., Kurien, E. K., Varma, G., & Bhatta, R. (2017). Impact of heat stress, nutritional stress and combined (heat and nutritional) stresses on rumen associated fermentation characteristics, histopathology and HSP70 gene expression in goats. Journal of Animal Behaviour and Biometeorology, 5, 36–48.Google Scholar
  24. Chappell, T. G., Welch, W. J., Schlossman, D. M., Palter, K. B., Schlesinger, M. J., & Rothman, J. E. (1986). Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell, 45, 3–13.PubMedCrossRefGoogle Scholar
  25. Collier, R. J., Baumgard, L. H., Lock, A. L., & Bauman, D. E. (2005). Physiological limitations, nutrient partitioning. In R. Sylvester-Bradley & J. Wiseman (Eds.), Yield of farmed species. Constraints and opportunities in the 21st century (pp. 351–377). Nottingham: Nottingham University Press.Google Scholar
  26. Collier, R. J., Stiening, C. M., Pollard, B. C., VanBaale, M. J., Baumgard, L. H., Gentry, P. C., & Coussens, P. M. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84, 1–13.CrossRefGoogle Scholar
  27. Collier, R. J., Collier, J. L., Rhoads, R. P., & Baumgard, L. H. (2008). Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science, 91, 445–454.PubMedCrossRefGoogle Scholar
  28. Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79(2), 129–168.CrossRefGoogle Scholar
  29. Da Silva, R. G., Barbosa, O. R. (1993). Thermal comfort index for sheep. In: International congress of Biometeorology, 13., Calgary. Proceedings. Calgary: International Society of Biometeorology v.2, p.383–392.Google Scholar
  30. Dangi, S. S., Gupta, M., Maurya, D., Yadav, V. P., Panda, R. P., Singh, G., Mohan, N. H., Bhure, S. K., Das, B. C., Bag, S., Mahapatra, R., & Sarkar, M. (2012). Expression profile of HSP genes during different seasons in goats (Capra hircus). Tropical Animal Health and Production, 44, 1905–1912.PubMedCrossRefGoogle Scholar
  31. Dangi, S. S., Gupta, M., Nagar, V., Yadav, V. P., Dangi, S. K., Om, S., Chouhan, V. S., Kumar, P., Singh, G., & Sarkar, M. (2014a). Impact of short-term heat stress on physiological responses and expression profile of HSPs in Barbari goats. International Journal of Biometeorology, 58(10), 2085–2093.PubMedCrossRefGoogle Scholar
  32. Dangi, S. S., Gupta, M., Dangi, S. K., Chouhan, V. S., Maurya, V. P., Kumar, P., Singh, G., & Sarkar, M. (2014b). Expression of HSPs: An adaptive mechanism during long-term heat stress in goats (Capra hircus). International Journal of Biometeorology.  https://doi.org/10.1007/s00484-014-0922-5.
  33. Dangi, S. S., Gupta, M., Dangi, S. K., Chouhan, V. S., & Maurya, V. P. (2015). Expression of HSPs: An adaptive mechanism during long-term HS in goats (Capra hircus). International Journal of Biometeorology, 59(8), 1095–1106.PubMedCrossRefGoogle Scholar
  34. Daniel, S., Bradley, G., Longshaw, V. M., Soti, C., Csermely, P., & Blatch, G. L. (2008). Nuclear translocation of the phosphoprotein hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochimica et Biophysica Acta, 1783(6), 1003–1014.PubMedCrossRefGoogle Scholar
  35. Daugaard, M., Rohde, M., & Jaattela, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.PubMedCrossRefGoogle Scholar
  36. David, N. K., Anthony, J. M., & Robert, E. F. (1990). Effect of stress on the immune system. Immunology Today, 11, 170–175.CrossRefGoogle Scholar
  37. Deb, R., Sajjanar, B., Singh, U., Kumar, S., Brahmane, M. P., Singh, R., Sengar, G., & Sharma, A. (2013). Promoter variants at AP2 box region of Hsp70. 1affect thermal stress response and milk production traits in Frieswal crossbred cattle. Gene, 532(2), 230–235.PubMedCrossRefGoogle Scholar
  38. Deb, R., Sajjanar, B., Singh, U., Kumar, S., Singh, R., Sengar, G., & Sharma, A. (2014). Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus×Bos taurus) breed of cattle: A comparative study. Gene, 536(2), 435–440.PubMedCrossRefGoogle Scholar
  39. Derveaux, S., Vandesompele, J., & Hellemans, J. (2010). How to do successful gene expression analysis using real-time PCR. Methods, 50, 227–230.PubMedCrossRefGoogle Scholar
  40. Devendra, C. (1990). Comparative aspects of digestive physiology and nutrition in goats and sheep. In C. Devendra & E. Imazumi (Eds.), Proceedings of the satellite symposium on ruminant nutrition and physiology, 7th international symposium on ruminant physiology (pp. 45–60). Tokyo: Japan Society of Zootechnical Science.Google Scholar
  41. Di Domenico, B. J., Bugaisky, G. E., & Lindquist, S. (1982). The heat shock response is self regulated at both at both the transcriptional and posttranscriptional levels. Cell, 31(3 pt 2), 593–603.CrossRefGoogle Scholar
  42. Dobson, H., & Smith, R. F. (2000). What is stress, and how does it affect reproduction? Animal Reproduction Science, 2(60–61), 743–752.CrossRefGoogle Scholar
  43. Doklandy, K., Moseley, P. L., & Ma, T. Y. (2006). Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290, 204–212.CrossRefGoogle Scholar
  44. Dong, Y., Miller, L. P., Sanders, J. G., & Somero, G. N. (2008). Heat shock protein 70 (Hsp70) expression in four limpets of the genus lottia: Interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. The Biological Bulletin, 215(2), 173–181.PubMedCrossRefGoogle Scholar
  45. Duncan, R. (2005). Inhibition of Hsp90 function delays and impairs recovery from heat shock. The FEBS Journal, 272, 5244–5256.PubMedCrossRefGoogle Scholar
  46. Easton, D. P., Rutledge, P. S., & Spotila, J. R. (1987). Heat shock protein induction and induced thermal tolerance are independent in adult salamanders. The Journal of Experimental Zoology, 241, 263–267.PubMedCrossRefGoogle Scholar
  47. Eigenberg, R. A., Brown-Brandl, T. M., Nienaber, J. A., & Hahn, G. L. (2005). Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, part 2: Predictive relationships. Biosystems Engineering, 91(1), 111–118.CrossRefGoogle Scholar
  48. FAO. (2007). Adaptation to climate change in agriculture, forestry, and fisheries: Perspective, framework and priorities (p. 24). Rome: FAO.Google Scholar
  49. FAO (2009). The State of Food and agriculture, livestock in the balance. Rome. Available from: http://www.fao.org/publications/sofa/en/
  50. Fargnoli, J., Kunisada, T., Fornace, A. J., Schneider, E. L., & Holbrook, N. J. (1990). Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proceedings of the National Academy of Sciences of the United States of America, 87, 846–850.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Feder, M. E., & Hofmann, G. E. (1999). Heat shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.PubMedCrossRefGoogle Scholar
  52. Flanagan, S. W., Ryan, A. J., Gisolfi, C. V., & Moseley, P. L. (1995). Tissue-specific HSP70 response in animals undergoing heat stress. The American Journal of Physiology, 268, 28–32.Google Scholar
  53. Fujimoto, M., & Nakai, A. (2010). The heat shock factor family and adaptation to proteotoxic stress. The FEBS Journal, 277(20), 4112–4125.PubMedCrossRefGoogle Scholar
  54. Fung, K. L., Hilgenberg, L., Wang, N. M., & Chirico, W. J. (1996). Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. The Journal of Biological Chemistry, 271, 21559–21565.PubMedCrossRefGoogle Scholar
  55. Gade, N., Mahapatra, R. K., Sonawane, A., Singh, V. K., & Doreswamy, R. (2010). Molecular characterization of heat shock protein 70-1 gene of goat (Capra Hircus). Molecular Biology International, 5, 1–7.CrossRefGoogle Scholar
  56. Gallagher, D. S., Grosz, M. D., Womack, J. E., & Skow, L. C. (1993). Chromosomal localization of HSP70 genes in cattle. Mammalian Genome, 4, 388–390.PubMedCrossRefGoogle Scholar
  57. Ganaie, A. H., Shanker, G., Bumla, N. A., Ghasura, R. S., & Mir, N. A. (2013). Biochemical and physiological changes during thermal stress in bovines. Journal of Veterinary Science and Technology, 4, 126.Google Scholar
  58. Garret, A. T., Goosen, N. G., Rehrer, N. G., Rehrer, N. G., Patterson, M. J., & Cotter, J. D. (2009). Induction and decay of short-term heat acclimation. European Journal of Applied Physiology, 107, 659–670.CrossRefGoogle Scholar
  59. Gaughan, J. G., Goopy, J., & Spark, J. (2002). Excessive heat load index for feedlot cattle. Sydney: MLA Ltda.Google Scholar
  60. Gaughan, J. B., Mader, T. L., Holt, S. M., & Lisle, A. (2008). A new heat load index for feedlot cattle. Journal of Animal Science, 86, 226–234.PubMedCrossRefGoogle Scholar
  61. Gaughan, J. B., Bonner, S. L., Loxton, I., & Mader, T. L. (2013). Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. Journal of Animal Science, 91, 120–129.PubMedCrossRefGoogle Scholar
  62. Gaughan, J. B., Bonner, S. L., Loxton, I., & Mader, T. L. (2014). Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. Journal of Animal Science, 91, 120–129.Google Scholar
  63. Gething, M. J. (1997). Guidebook to molecular chaperones and protein folding catalysts. Oxford: Oxford University Press.Google Scholar
  64. Grad, I., & Picard, D. (2007). The glucocorticoid responses are shaped by molecular chaperones. Molecular and Cellular Endocrinology, 275, 2–12.PubMedCrossRefGoogle Scholar
  65. Gray, C. C., Amrani, M., Smolenski, R. T., Taylor, G. L., & Yacoub, M. H. (2000). Age dependence of heat stress mediated cardio protection. The Annals of Thoracic Surgery, 70, 621–626.PubMedCrossRefGoogle Scholar
  66. Grosz, M. D., Womack, J. E., & Skow, L. C. (1992). Syntenic conservation of HSP70 genes in cattle and humans. Genomics, 14, 863–868.PubMedCrossRefGoogle Scholar
  67. Guerriero, V., & Raynes, A. D. (1990). Synthesis of heat shock proteins in lymphocytes from livestock. Journal of Animal Science, 68, 2779–2783.PubMedCrossRefGoogle Scholar
  68. Gupta, M., Kumar, S., Dangi, S. S., & Jangir, B. L. (2013). Physiological, biochemical and molecular responses to thermal stress in goats. International Journal of Livestock Research, 3, 27–38.CrossRefGoogle Scholar
  69. Gutierrez, J. A., & Guerriero, V., Jr. (1995). Chemical modifications of a recombinant bovine stress-inducible 70 kDa heat-shock protein (Hsp70) mimics Hsp70 isoforms from tissues. Biochemical Journal, 305(1), 197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hackmann, T. J., & Spain, J. N. (2010). Invited review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. Journal of Dairy Science, 93(4), 1320–1334.PubMedCrossRefGoogle Scholar
  71. Hageman, J., Waarde, M. A. W. H. V., Zylicz, A., Walerych, D., & Kampinga, H. H. (2011). The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. The Biochemical Journal, 435, 127–142.PubMedCrossRefGoogle Scholar
  72. Hall, D. M., Oberley, T. D., Moseley, P. L., Buettner, G. R., Oberley, L. W., Weindruch, R., & Kregel, K. C. (2000). Caloric restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. The FASEB Journal, 14, 78–86.PubMedCrossRefGoogle Scholar
  73. Hansen, P. J. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science, 82, 349–360.PubMedCrossRefGoogle Scholar
  74. Hartl, F. U., & Martin, J. (1995). Molecular chaperones in cellular protein folding. Current Opinion in Structural Biology, 5, 92–102.PubMedCrossRefGoogle Scholar
  75. Hauser, G. J., Dayao, E. K., Wasserloose, K., Pitt, B. R., & Wong, H. R. (1996). HSP induction inhibits iNOS RNA expression and attenuates hypotension in endotoxin-challenged rats. The American Journal of Physiology, 271, 2529–2535.Google Scholar
  76. Hom, L. L., Lee, E. C. H., Apicella, J. M., Wallace, S. D., Emmanuel, H., Klau, J. F., Poh, P. Y. S., Marzano, S., Armstrong, L. E., Casa, D. J., & Maresh, C. M. (2012). Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress & Chaperones, 17, 29–39.CrossRefGoogle Scholar
  77. Horowitz, M. (2001). Heat acclimation: Phenotypic plasticity and cues to the underlying molecular mechanisms. Journal of Thermal Biology, 26, 357–363.CrossRefGoogle Scholar
  78. Horowitz, M. (2002). From molecular and cellular to integrative heat defense during exposure to chronic heat. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131, 475–483.CrossRefGoogle Scholar
  79. Hu, H., Zhang, Y., Zheng, N., Cheng, J., & Wang, J. (2016). The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells. Journal of Animal Science, 87, 84–91.CrossRefGoogle Scholar
  80. Hyder, I., Ramesh, K., Sharma, S., Uniyal, S., Yadav, V. P., Panda, R. P., Maurya, V. P., Singh, G., & Sarkar, M. (2013). Effect of different dietary energy levels on physio-biochemical, endocrine changes and mRNA expression profile of leptin in goat (Capra hircus). Livestock Science, 154, 63–73.CrossRefGoogle Scholar
  81. Hyder, I., Sejian, V., Gaughan, J. B., & Bhatta, R. (2017). Biological role of melatonin during summer season related heat stress in livestock. Biological Rhythm Research, 48(2), 297–314.CrossRefGoogle Scholar
  82. IPCC, (2007). Climate change 2007: The physical science basis, summary for policy makers. Contribution of working group I to the fourth assessment report of intergovernmental panel on climate change.Google Scholar
  83. IPCC. (2014). Summary for policymakers. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge/New York: Cambridge University Press.Google Scholar
  84. Ishihara, K., Yasuda, K., & Hatayama, T. (1999). Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105. Biochimica et Biophysica Acta, 1444, 138–142.PubMedCrossRefGoogle Scholar
  85. Jackson, S. E. (2013). Hsp90: Structure and function. Topics in Current Chemistry, 328, 155–240.PubMedCrossRefGoogle Scholar
  86. Jagan, M. G., Mukherjee, A., Banerjee, D., Gohain, M., Dass, G., Brahman, B., Datta, T. K., Upadhyay, R. C., & De, S. (2014). Hsp70 family and hsp27 expression inresponse to heat and cold stress in vitro in peripheral blood mononuclear cellsof goat (Capra Hircus). Small Ruminant Research, 116(2), 94–99.CrossRefGoogle Scholar
  87. Kadzere, C. T., Murphy, M. R., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows: A review. Livestock Production Science, 77, 59–91.CrossRefGoogle Scholar
  88. Kampinga, H. H., Kanon, B., Salomons, F. A., Kabakov, A. E., & Patterson, C. (2003). Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Molecular and Cellular Biology, 23, 4948–4958.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bru-ford, E. A., Cheetham, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.CrossRefGoogle Scholar
  90. Kamwanja, L. A., Chase, C. C., Gutierrez, J. A., Guerriero, V., Olson, T. A., Hammond, A. C., & Hansen, P. J. (1994). Responses of bovine lymphocytes to heat-shock as modified by breed and antioxidant status. Journal of Animal Science, 72, 438–444.PubMedCrossRefGoogle Scholar
  91. Kapila, N., Sharma, A., Kishore, A., Sodhi, M., Pawan, K. T., Mohanty, A. K., & Mukesh, M. (2016). Impact of heat stress on cellular and transcriptional adaptation of mammary epithelial cells in riverine buffalo (Bubalus Bubalis). PLoS One, 28, 1–28.Google Scholar
  92. Kerekoppa, R. P., Rao, A., Basavaraju, M., Geetha, G. R., Krishnamurthy, L., Narasimha rao, T. V. L., Das, D. N., & Mukund, K. (2015). Molecular characterization of the HSPA1A gene by single strand conformation polymorphism and sequence analysis in Holstein-friesian crossbred and deoni cattle raised in India. Turkish Journal of Veterinary and Animal Sciences, 39, 128–133.CrossRefGoogle Scholar
  93. King, Y. T., Lin, C. S., Lin, J. H., & Lee, W. C. (2002). Whole-body hyperthermia-induced thermo tolerance is associated with the induction of heat shock protein 70 in mice. The Journal of Experimental Biology, 205, 273–278.PubMedGoogle Scholar
  94. Kishore, A., Sodhi, M., Kumari, P., Mohanty, A. K., Sadana, D. K., Kapila, N., Khate, K., Shandilya, U., Kataria, R. S., & Mukesh, M. (2013). Peripheral blood mononuclear cells: A potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India. Cell Stress & Chaperones, 19(5), 613–621.CrossRefGoogle Scholar
  95. Kishore, A., Sodhi, M., Sharma, A., Shandilya, U. K., Mohanty, A., Verma, P., Mann, S., & Mukesh, M. (2016). Transcriptional stability of heat shock protein genes and cell pro-liferation rate provides an evidence of superior cellular tolerance of Sahiwal (Bos indicus) cow PBMCs to summer stress. Research & Reviews Journal of Veterinary Sciences, 2(1), 34–40.Google Scholar
  96. Kostal, V., & Tollarova –Borovanská, M. (2009). The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PLoS One, 4, e4546.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kristensen, T. N., & Løvendahl, P. (2006). Physiological responses to heat stress and their potential use as indicators of reduced animal welfare in jersey calves. Acta Zoologica Sinica, 52, 681–689.Google Scholar
  98. Kristensen, T. N., Løvendahl, P., & Berg, V. L. (2004). Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress & Chaperones, 9, 143–149.CrossRefGoogle Scholar
  99. Kuhl, N. M., & Rensing, L. (2000). Heat shock effects on cell cycle progression. Cellular and Molecular Life Sciences, 57, 450–463.PubMedCrossRefGoogle Scholar
  100. Kumar, R., Gupta, I. D., Verma, A., Verma, N., & Magotra, A. (2015). Molecular characterization and polymorphism detection in HSPB6 gene in Sahiwal cattle. Indian Journal of Animal Sciences, 49(5), 595–598.Google Scholar
  101. Lacetera, N., Bernabucci, U., Scalia, D., Basirico, L., Morera, P., & Nardone, A. (2006). Heat stress elicits different responses in peripheral blood mono nuclear cells from Brown Swiss and Holstein cows. Journal of Dairy Science, 89, 4606–4612.PubMedCrossRefGoogle Scholar
  102. Lamb, M., Okimoto, R., Broun, M., & Osenkranes, R. C. (2007). Associations between cattle breed and heat shock protein 70 gene. Res Ser, 545, 205–206.Google Scholar
  103. Lambert, G. P. (2009). Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal of Animal Science, 87, 101–108.CrossRefGoogle Scholar
  104. Latchman, D. S. (2001). Heat shock protein and cardiac protection. Cardiovascular Research, 51, 637–646.PubMedCrossRefGoogle Scholar
  105. Lei, L., Yu, J., & Bao, E. (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. British Poultry Science, 50, 504–511.PubMedCrossRefGoogle Scholar
  106. Li, Q., Han, J., Du, F., Ju, Z., Huang, J., Wang, J., Li, R., Wang, C., & Zhong, J. (2011). Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Molecular Biology Reports, 38(4), 2657–2663.PubMedCrossRefGoogle Scholar
  107. Lindquist, S. (1980). Varying patterns of protein synthesis in drosophila during heat shock: Implications for regulation. Developmental Biology, 77(2), 463–479.PubMedCrossRefGoogle Scholar
  108. Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55(1), 151–191.CrossRefGoogle Scholar
  109. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.PubMedCrossRefGoogle Scholar
  110. Liu, A. Y. C., Bian, H., Huang, L. E., & Lee, Y. K. (1994). Transient cold shock induces the heat shock response upon recovery at 37ºC in human cells. The Journal of Biological Chemistry, 269, 14768–14775.PubMedGoogle Scholar
  111. Liu, Y. X., Li, D. Q., Cui, Q, W., Shi, H. X., Wang, G. L. (2010). Analysis of HSP70 mRNA level and association between linked microsatellite loci and heat tolerance traits in dairy cows. Yi Chuan 3, 935–941.Google Scholar
  112. Mader, T. L., Davis, M. S., & Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84, 712–719.PubMedCrossRefGoogle Scholar
  113. Mader, T. L., Johnson, L. J., & Gaughan, J. B. (2010). A comprehensive index for assessing environmental stress in animals. Journal of Animal Science, 88, 2153–2165.PubMedCrossRefGoogle Scholar
  114. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004). Ascorbic acid decreases heat shock protein 70 and plasma corticosterone response in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 137, 35–42.CrossRefGoogle Scholar
  115. Maibam, U., Hoodaa, O. K., Sharmab, P. S., Mohantyc, A. K., Singha, S. V., & Upadhyaya, R. C. (2017). Expression of HSP70 genes in skin of zebu (Tharparkar) and crossbred (Karan fries) cattle during different seasons under tropical climatic conditions. Journal of Thermal Biology, 63, 58–64.PubMedCrossRefGoogle Scholar
  116. Malayer, J. R., & Hansen, P. J. (1990). Differences between Brahman and Holstein cows in heat-shock induced alterations of protein secretion by oviducts and uterine endometrium. Journal of Animal Science, 68, 266–280.PubMedCrossRefGoogle Scholar
  117. Maloyan, A., Palmon, A., & Horowitz, M. (1999). Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 276, 1506–1515.CrossRefGoogle Scholar
  118. Malyshev, I. Y., Bayda, L. A., Trifonov, A. I., Larionov, N. P., Kubrina, L. D., Mikoyan, V. D., Vanin, A. F., & Manukhina, E. B. (2000). Cross-talk between nitric oxide and HSP70 in the anti hypotensive effect of adaptation to heat. Physiological Research, 49, 99–105.PubMedGoogle Scholar
  119. Manjari, R., Yadav, M., Ramesh, K., Uniyal, S., Rastogi, S. K., Sejian, V., & Hyder, I. (2015). HSP 70 as a marker of heat and humidity stress in Tarai buffalo. Tropical Animal Health and Production, 47, 111–116.PubMedCrossRefGoogle Scholar
  120. Marai, I. F. M., El-Darawany, A. A., Abou-Fandoud, E. I., & Abdel-Hafez, M. A. M. (2006). Tonica dartos index as a parameter of adaptability of rams in sub-tropical conditions of Egypt. Animal Science, 77, 487–494.CrossRefGoogle Scholar
  121. Marai, I. F., Eidarawany, A. A., Fadiel, L. A., & Abdel-Hafez, M. A. M. (2007). Physiological traits as affected by heat stress in sheep – A review. Small Ruminant Research, 71, 1–12.CrossRefGoogle Scholar
  122. Maurya, V. P., Naqvi, S. M. K., Joshi, A., & Mittal, J. P. (2007). Effect of high temperature stress on physiological responses of Malpura sheep. The Indian Journal of Animal Sciences, 77, 1244–1247.Google Scholar
  123. McClung, J. P., Hasday, J. D., He, J. R., Montain, S. J., Cheuvront, S. N., Sawka, M., & Singh, I. S. (2008). Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294, 185–191.CrossRefGoogle Scholar
  124. Mcdowell, L. R. (1989). Vitamins in animal nutrition. In: Mcdowell, L.R. (ed) Comparative aspects to human nutrition. Vitamin E. Academic, London, 1989, p. 93–131.Google Scholar
  125. McManus, C., Paluda, G. R., Louvandini, H., Gugel, R., Sasaki, L. C. B., & Paiva, S. R. (2009). Heat tolerance in Brazilian sheep: Physiological and blood parameters. Tropical Animal Health and Production, 41, 95–101.PubMedCrossRefGoogle Scholar
  126. Meijering, R. A., Henning, R. H., & Brundel, B. J. (2015). Reviving the protein quality control system: Therapeutic target for cardiac disease in the elderly. Trends in Cardiovascular Medicine, 25(3), 243–247.PubMedCrossRefGoogle Scholar
  127. Mishra, S. R., & Palai, T. K. (2014). Importance of heat shock protein 70 in livestock - at cellular level. Journal of Molecular Pathophysiol, 3(2), 30–32.CrossRefGoogle Scholar
  128. Mishra, A., Hooda, O. K., Singh, G., & Meur, S. K. (2010). Influence of induced heat stress on HSP70 in buffalo lymphocytes. Journal of Animal Physiology and Animal Nutrition, 95, 540–544.PubMedCrossRefGoogle Scholar
  129. Mishra, A., Hooda, O. K., Singh, G., & Meur, S. K. (2011). Influence of induced HS on HSP70 in buffalo lymphocytes. Journal of Animal Physiology and Animal Nutrition, 95(4), 540–544.PubMedCrossRefGoogle Scholar
  130. Misra, R. P., & Puneet, K. (2009). Improved shelter management, feeding and watering devices for goats. In S. Kumar, M. C. Sharma, & A. K. Goel (Eds.), Goat Enterprises (p. 132). Mathura: CIRG.Google Scholar
  131. Mohanarao, G. J., Mukherjee, A., Banerjee, D., Gohain, M., Dass, G., Brahma, B., Datta, T. K., Upadhyay, R. C., & Sachinandan, D. (2014). HSP70 family genes and HSP27 expression in response to heat and cold stress in vitro in peripheral blood mononuclear cellsof goat (Capra Hircus). Small Ruminant Research, 116, 94–99.CrossRefGoogle Scholar
  132. Moran, D. S., Pandolf, K. B., & Shapiro, Y. (2001). An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). Journal of Thermal Biology, 26, 427–431.CrossRefGoogle Scholar
  133. Morange, F. (2006). HSFs in development. Handbook of Experimental Pharmacology, 172, 153–169.CrossRefGoogle Scholar
  134. Morimoto, R. I., Tissieres, A., & Georgopoulos, C. (1994). The biology of heat shock proteins and molecular chaperones (2nd ed.pp. 1–593). Cold Spring Harbor Laboratory: Cold Spring Harbor.Google Scholar
  135. Muller, P. B. (1982). Bioclimatologia aplicada aos animais domésticos. 2ª Edição rev. e atual. Porto Alegre. Ed. Sulina, 1982, P. 158.Google Scholar
  136. Nagayach, R., Gupta, U. D., & Prakash, A. (2017). Expression profiling of hsp70 gene during different seasons in goats(Capra Hircus) under sub-tropical humid climatic conditions. Small Ruminant Research, 147, 41–47.CrossRefGoogle Scholar
  137. Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130, 57–69.CrossRefGoogle Scholar
  138. Nemoto, T. K., Fukuma, Y., Itoh, H., Takagi, T., & Ono, T. (2006). A disulfide bridge mediated by cysteine 574 is formed in the dimer of the 70-kDa heat shock protein. Journal of Biochemistry, 139, 677–687.PubMedCrossRefGoogle Scholar
  139. Ogura, Y., Naito, H., Akin, S., Ichinoseki-Sekine, N., Kurosaka, M., Kakigi, R., Sugiura, T., Powers, S. K., Katamoto, S., & Demirel, H. A. (2008). Elevation of body temperature is an essential factor for exercise increased extracellular heat shock protein 72 level in rat plasma. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294, 1600–1607.CrossRefGoogle Scholar
  140. Parsell, D. A., & Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437–496.PubMedCrossRefGoogle Scholar
  141. Patir, H., & Upadhyay, R. C. (2007). Interrelationship between heat shock protein 70 (HSP70) and lymphocyte proliferation in thermal exposed buffalo heifers. Italian Journal of Animal Science, 6, 1344–1346.CrossRefGoogle Scholar
  142. Patir, H., & Upadhyay, R. C. (2010). Purification, characterization and expression kinetics of heat shock protein 70 from Bubalus Bubalis. Research in Veterinary Science, 88, 258–262.PubMedCrossRefGoogle Scholar
  143. Paula-Lopes, F. F., Chase, J. C. C., Al-Katanani, Y. M., Krininger, C. E. I. I. I., Rivera, R. M., Tekin, S., Majewski, A. C., Ocon, O. M., Olson, T. A., & Hansen, P. J. (2003). Genetic divergence in cellular resistance to heat shock in cattle: Differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction, 125, 285–294.PubMedCrossRefGoogle Scholar
  144. Pawar, H. N., Kumar, G. R., Narang, R., & Agrawal, K. (2014). Heat and cold stress enhances the expression of heat shock protein 70, heat shock transcription factor 1 and cytokines (IL-12, TNF- and GMCSF) in buffaloes. International Journal of Current Microbiology and Applied Sciences, 3(2), 307–317.Google Scholar
  145. Périard, J. D., Ruell, P., Caillaud, C., & Thompson, M. W. (2012). Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: Influence of exercise intensity. Cell Stress Chaperones, 17, 375–383.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pratt, W. B., Morishima, Y., Peng, H. M., & Osawa, Y. (2010). Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Experimental Biology and Medicine (Maywood, N.J.), 235, 278–289.CrossRefGoogle Scholar
  147. Quere, C. L., Peters, G. P., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., & Houghton, R. A. (2014). Global carbon budget 2013. Earth System Science Data, 6, 235–263.CrossRefGoogle Scholar
  148. Rhoads, R. P., Baumgard, L. H., Suagee, J. K., & Sanders, S. R. (2013). Nutritional interventions to alleviate the negative consequences of heat stress. Advances in Nutrition, 4, 267–276.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18, 571–573.CrossRefGoogle Scholar
  150. Romero, R. D., Pardo, A. M., Montaldo, H. H., Rodríguez, A. D., & Cerón, J. H. (2013). Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress. Tropical Animal Health and Production, 45(8), 1691–1696.PubMedCrossRefGoogle Scholar
  151. Rosenkrans, C. J., Banks, A., Reiter, S., & Looper, M. (2010). Calving traits of crossbred Brahman cows are associated with heat shock protein 70 genetic polymorphisms. Animal Reproduction Science, 119(3–4), 178–182.PubMedCrossRefGoogle Scholar
  152. Rout, P. K., Kaushik, R., & Ramachandran, N. (2016). Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period. Cell Stress Chaperones, 21(4), 645–651.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Salah, M. S., Al-Shaikh, M. A., Al-Saiadi, M. Y., & Mogawer, H. H. (1995). Effect of prolactin inhibition on thermoregulation, water and food intake in heat stressed fat-tailed male lambs. Journal of Animal Science, 60, 87–91.CrossRefGoogle Scholar
  154. Salama, A. A. K., Hamzaoui, S., Caja, G. (2012). Responses of dairy goats to heat stress and strategies to alleviate its effects. Proc. XI International Conference on Goats, Gran Canaria, Spain, 23–27.09.2012, p. 15.Google Scholar
  155. Sareh, H., Tulapurkar, M. E., Shah, N. G., Singh, I. S., & Hasday, J. D. (2011). Response of mice to continuous 5-day passive hyperthermia resembles human heat acclimation. Cell Stress & Chaperones, 16, 297–307.CrossRefGoogle Scholar
  156. Satio, M., Tominaga, L., Nanba, E., & Miyagawa, I. (2004). Expression of HSP70 and its mRNA during ischemi are perfusion in rat prostate. European Journal of Pharmacology, 487, 199–203.CrossRefGoogle Scholar
  157. Schwerin, M., Czernek-Schafer, D., Goldammer, T., Kata, S. R., & Womack, J. E. (2003). Application of disease-associated differentially expressed gees, mining for functional candidate genes for mastitis resistance in cattle. Genetics, Selection, Evolution, 35, 19–34.CrossRefGoogle Scholar
  158. Sejian, V. (2013). Climate change: Impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: A review. Indian Journal of Small Ruminants, 19(1), 1–21.Google Scholar
  159. Sejian, V., Maurya, V. P., & Naqvi, S. M. K. (2010). Adaptability and growth of Malpura ewes subjected to thermal and nutritional stress. Tropical Animal Health and Production, 42, 1763–1770.PubMedCrossRefGoogle Scholar
  160. Sejian, V., Indu, S., & Naqvi, S. M. K. (2013). Impact of short term exposure to different environmental temperature on the blood biochemical and endocrine responses of Malpura ewes under semi-arid tropical environment. The Indian Journal of Animal Sciences, 83(11), 1155–1160.Google Scholar
  161. Shabtay, A., & Arad, Z. (2005). Ectothermy and endothermy: Evolutionary perspectives of thermoprotection by HSPs. The Journal of Experimental Biology, 208, 2773–2781.PubMedCrossRefGoogle Scholar
  162. Shaji, S., Sejian, V., Bagath, M., Mech, A., David, I. C. G., Kurien, E. K., Varma, G., & Bhatta, R. (2016). Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors. International Journal of Biometeorology, 60, 1311–1323.CrossRefGoogle Scholar
  163. Shaji, S., Sejian, V., Bagath, M., Manjunathareddy, G. B., Kurien, E. K., Varma, G., & Bhatta, R. (2017). Summer season related heat and nutritional stresses on the adaptive capability of goats basedon blood biochemical response and hepatic HSP70 gene expression. Biological Rhythm Research, 48(1), 65–83.CrossRefGoogle Scholar
  164. Shapiro, Y., Alkan, M., Epstein, Y., Newman, F., & Magazanik, A. (1986). Increase in rat intestinal permeability to endotoxin during hyperthermia. European Journal of Applied Physiology, 55, 410–412.CrossRefGoogle Scholar
  165. Sharma, S., Ramesh, K., Hyder, I., Uniyal, S., Yadav, V. P., Panda, R. P., Maurya, V. P., Singh, G., Kumar, P., Mitra, A., & Sarkar, M. (2013). Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (Capra hircus) exposed to heat stress. Small Ruminant Research, 112, 216–223.CrossRefGoogle Scholar
  166. Shearer, J. K., & Beede, D. K. (1990). Thermoregulation and physio-logical responses of dairy cattle in hot weather. Agri-Practice, 11, 5–17.Google Scholar
  167. Shimizu, S., Nomura, K., Ujihara, M., Sakamoto, K., Shibata, H., & Susuki, T. (1996). An allele-specific abnormal transcript of the heat shock protein 70 gene in patients with major depression. Biochemical and Biophysical Research Communications, 219, 745–752.PubMedCrossRefGoogle Scholar
  168. Shkolnik, A., & Silanikove, N. (1981). Water economy, energy metabolism and productivity in desert ruminants. In P. Morand-Fehr, A. Borbouse, & M. De Simiance (Eds.), Book-series title nutrition and systems of goat feeding (Vol. 1, 1981, pp. 236–246). Tours: ITOVIC-INRA.Google Scholar
  169. Silanikove, N. (2000a). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67, 1–18.CrossRefGoogle Scholar
  170. Silanikove, N. (2000b). The physiological basis of adaptation in goats to harsh environments. Small Ruminant Research, 35, 181–193.CrossRefGoogle Scholar
  171. Silanikove, N., & Koluman, N. (2015). Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research, 123, 27–34.CrossRefGoogle Scholar
  172. Silva, C. F., Sartorelli, E. S., Castilho, A. C. S., Satrapa, R. A., & Puelker, R. Z. (2012). Effects of HS on development, quality and survival of Bosindicus and Bostaurus embryos produced in vitro. Theriogenology, 79(2), 351–357.PubMedCrossRefGoogle Scholar
  173. Simon, M. M., Reikerstorfer, A., Schwarz, A., Krone, C., Luger, T. A., Jäättelä, M., & Schwarz, T. (1995). Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts evidence for increased cell viability and suppression of cytokine release. The Journal of Clinical Investigation, 95, 926–933.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S., & Singh, S. V. (2014). Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-fries) cattle. Thermal Biology, 43, 46–53.CrossRefGoogle Scholar
  175. Siple, P. A., & Passel, C. F. (1945). Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of the American Philosophical Society, 89, 177–199.Google Scholar
  176. Slimen, B. I., Najar, T., Ghram, A., & Abdrrabba, M. (2016). Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition, 100(3), 401–412.CrossRefGoogle Scholar
  177. Smith, B. J., & Yaffe, M. P. (1991). Uncoupling thermotolerance from the induction of heat shock proteins. Proceedings of the National Academy of Sciences of the United States of America, 88, 11091–11094.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Soltys, B. J., & Gupta, R. S. (1996). Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Experimental Cell Research, 222(1), 16–27.PubMedCrossRefGoogle Scholar
  179. Sonna, L. A., Gaffin, S. L., Pratt, R. E., Cullivan, M. L., Angel, K. C., & Lilly, C. M. (2002). Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. Journal of Applied Physiology, 92(5), 2208–2220.PubMedCrossRefGoogle Scholar
  180. Sørensen, J. G. (2010). Application of heat shock protein expression for detecting natural adaptation and exposure to stress in natural populations. Current Zoology, 56, 703–713.Google Scholar
  181. Starkey, L., Looper, M. L., Banks, A., Reiter, S., & Rosenkrans, C. J. (2007). Identification of polymorphisms in the promoter region of the bovine heat shock protein gene and associations with bull calf weaning weight. American Society of Animal Science South Section Meeting, 85(2), 42.Google Scholar
  182. Tao, S., & Dahl, G. E. (2013). Heat stress effects during late gestation on dry cows and their calves. Journal of Dairy Science, 96, 4079–4093.PubMedCrossRefGoogle Scholar
  183. Tao, S., Monteiro, A. P. A., Thompson, I. M., Hayen, M. J., & Dahl, G. E. (2012). Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 95, 7128–7136.PubMedCrossRefGoogle Scholar
  184. Theriault, J. R., Lambert, H., Chavez-Zobel, A. T., Charest, G., Lavigne, P., & Landry, J. (2004). Essential role of the NH2-terminal WD/EPF motifin the phosphorylation-activated protective function of mammalian Hsp27. The Journal of Biological Chemistry, 279, 23463–23471.PubMedCrossRefGoogle Scholar
  185. Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57–60.CrossRefGoogle Scholar
  186. Tissieres, A., Mitchell, H. K., & Tracy, V. M. (1974). Protein synthesis in salivary gland of Drosophila Melanogaster: Relation to chromosome puff. Journal of Molecular Biology, 84, 389–398.PubMedCrossRefGoogle Scholar
  187. Tomanek, L., & Somero, G. N. (2000). Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Tegula) from different tidal heights. Physiological and Biochemical Zoology, 73(2), 249–256.PubMedCrossRefGoogle Scholar
  188. Trautinger, F., Trautinger, I., Kindas-Mugge, I., Metze, D., & Luger, T. A. (1993). Human keratinocytes in vivo and in vitro constitutively express the 72-kD heat shock protein. The Journal of Investigative Dermatology, 101, 334–338.PubMedCrossRefGoogle Scholar
  189. Van Dijk, J., Sargison, N. D., Kenyon, F., & Skuce, P. J. (2010). Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animals, 4, 377–392.Google Scholar
  190. Velichko, A. K., Markova, E. N., Petrova, N. V., Razin, S. V., & Kantidze, O. L. (2013). Mechanisms of heat shock response in mammals. Cellular and Molecular Life Sciences, 70(22), 4229–4241.PubMedCrossRefGoogle Scholar
  191. Verdegaal, M. E., Zegveld, S. T., & VannFurth, R. (1996). Heat shock protein 65 induces CD62 e, CD106 and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. Journal of Immunology, 157, 369–376.Google Scholar
  192. Verma, D. N., Lal, S. N., Singh, S. P., & Prakash, O. (2000). Effect of season on biological response and productivity of buffaloes. International Journal of Animal Sciences, 15, 237–244.Google Scholar
  193. Voellmy, R., & Boellmann, F. (2007). Chaperone regulation of the heat shock protein response. Advances in Experimental Medicine and Biology, 594, 89–99.PubMedCrossRefGoogle Scholar
  194. Volloch, V., & Rits, S. (1999). A natural extracellular factor that induces Hsp72, inhibits apoptosis, and restores stress resistance in aged human cells. Experimental Cell Research, 253, 483–492.PubMedCrossRefGoogle Scholar
  195. Widelitz, R. B., Magun, B. E., & Gerner, E. W. (1986). Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts. Molecular and Cellular Biology, 6, 1088–1094.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Yamagishi, N., Nishihori, H., Ishihara, K., Ohtsuka, K., & Hatayama, T. (2000). Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105alpha and Hsp105beta. Biochemical and Biophysical Research Communications, 272, 850–855.PubMedCrossRefGoogle Scholar
  197. Yamagishi, N., Ishihara, K., Saito, Y., & Hatayama, T. (2003). Hsp105 but not Hsp70 family proteins suppress the aggregation of heat-denatured protein in the presence of ADP. FEBS Letters, 555, 390–396.PubMedCrossRefGoogle Scholar
  198. Yamamoto, S. (1983). The assessment of thermal environment for farm animals. In: World congress on animal production 1983, Tokyo. Proceedings. Tokyo: Japanese Society of Zootechnical Science v.1, p.197–204.Google Scholar
  199. Yasuda, K., Nakai, A., Hatayama, T., & Nagata, K. (1995). Cloning and expression of murine high molecular mass heat shock proteins, HSP105. The Journal of Biological Chemistry, 270, 29718–29723.PubMedCrossRefGoogle Scholar
  200. Yousef, M. K. (1985). Basic principles. Stress physiology in livestock (Vol. 1). Boca Raton: CRC Press.Google Scholar
  201. Zulkifi, I., Liew, P. K., Israf, D. A., Omar, A. R., & Hair-Bejo, M. (2003). Effect of early age feed restriction and thermal conditioning on heterophil/ lymphocyte ratio, heat shock 70 and body temperature of male broiler chickens subjected to acute heat stress. Journal of Thermal Biology, 28, 217–222.CrossRefGoogle Scholar
  202. Zulkifli, I., Norbayyah, B., Cheah, Y. W., Soleimani, A. F., Sazili, A. Q., Goh, Y. M., & Rajion, M. A. (2010). A note on heat shock protein 70 expression in goats subjected to road transportation under hot, humid tropical conditions. Animal, 4, 973–976.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Iqbal Hyder
    • 1
  • Manjari Pasumarti
    • 2
  • Poonooru Ravikanth Reddy
    • 1
  • Chigurupati Srinivasa Prasad
    • 1
  • Kamisetty Aswani Kumar
    • 1
  • Veerasamy Sejian
    • 3
  1. 1.Department of Veterinary PhysiologyNTR College of Veterinary ScienceGannavaram, KrishnaIndia
  2. 2.Division of Veterinary ScienceKrishi Vigyan KendraPandirimamidi, East GodavariIndia
  3. 3.National Institute of Animal Nutrition and PhysiologyAdugodi, 560030 BangaloreIndia

Personalised recommendations