Skip to main content

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative for Sparse GPU Computations

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 796))

Included in the following conference series:

  • 815 Accesses

Abstract

In the last years, the presence of heterogeneous hardware platforms in the HPC field increased enormously. One of the major reason for this evolution is the necessity to contemplate energy consumption restrictions. As an alternative for reducing the power consumption of large clusters, new systems that include unconventional devices have been proposed. In particular, it is now common to encounter energy-efficient hardware such as GPUs and low-power ARM processors as part of hardware platforms intended for scientific computing.

A current line of our work aims to enhance the linear system solvers of ILUPACK by leveraging the combined computational power of GPUs and distributed memory platforms. One drawback of our solution is the limited level of parallelism offered by each sub-problem in the distributed version of ILUPACK, which is insufficient to exploit the conventional GPU architecture.

This work is a first step towards exploiting the use of energy efficient hardware to compute the ILUPACK solvers. Specifically, we developed a tuned implementation of the SPD linear system solver of ILUPACK for the NVIDIA Jetson TX1 platform, and evaluated its performance in problems that are unable to fully leverage the capabilities of high end GPUs. The positive results obtained motivate us to move our solution to a cluster composed by this kind of devices in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ilupack.tu-bs.de.

  2. 2.

    See: JETSON TX1 DATASHEET DS-07224-010_v1.1.

  3. 3.

    Assuming a memory-bound procedure.

  4. 4.

    TESLA K20 GPU ACCELERATOR - Board Specifications - BD-06455-001_v05.

  5. 5.

    JETSON TX1 DATASHEET DS-07224-010_v1.1.

References

  1. Aliaga, J.I., Bollhöfer, M., Martín, A.F., Quintana-Ortí, E.S.: Parallelization of multilevel ILU preconditioners on distributed-memory multiprocessors. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28151-8_16

    Chapter  Google Scholar 

  2. Aliaga, J.I., Dufrechou, E., Ezzatti, P., Quintana-Ortí, E.S.: Design of a task-parallel version of ILUPACK for graphics processors. In: Barrios Hernández, C.J., Gitler, I., Klapp, J. (eds.) CARLA 2016. CCIS, vol. 697, pp. 91–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57972-6_7

    Chapter  Google Scholar 

  3. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., Quintana-Ortí, E.S.: Leveraging data-parallelism in ILUPACK using graphics processors. In: Muntean, T., Rolland, R., Mugwaneza, L. (eds.) IEEE 13th International Symposium on Parallel and Distributed Computing, ISPDC 2014, Marseille, France, 24–27 June 2014, pp. 119–126. IEEE (2014)

    Google Scholar 

  4. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, vol. 43. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  5. Bollhöfer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31(5), 3781–3805 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anonymous Contributors: start—mont-blanc prototype (2016). Accessed 10 July 2017

    Google Scholar 

  8. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geveler, M., Ribbrock, D., Donner, D., Ruelmann, H., Höppke, C., Schneider, D., Tomaschewski, D., Turek, S.: The ICARUS white paper: a scalable, energy-efficient, solar-powered HPC center based on low power GPUs. In: Desprez, F., et al. (eds.) Euro-Par 2016. LNCS, vol. 10104, pp. 737–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58943-5_59. ISBN 978-3-319-58943-5

    Chapter  Google Scholar 

  10. Geveler, M., Turek, S.: How applied sciences can accelerate the energy revolution-a pleading for energy awareness in scientific computing. In: Newsletter of the European Community on Computational Methods in Applied Sciences, January 2017, accepted

    Google Scholar 

  11. NVIDIA: TESLA K20 GPU Accelerator (2013). https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf. Accessed 10 July 2017

  12. NVIDIA: NVIDIA Tegra X1 NVIDIAs New Mobile Superchip (2015). http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf. Accessed 10 July 2017

  13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publications, Philadelphia (2003)

    Book  MATH  Google Scholar 

  14. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques for the Anderson model of localization. SIAM Rev. 50, 91–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schenk, O., Wächter, A., Weiser, M.: Inertia revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The researchers from the Universidad Jaime I were supported by the CICYT project TIN2014-53495R of The researchers from UdelaR were supported by PEDECIBA and CAP-UdelaR Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Dufrechou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliaga, J.I., Dufrechou, E., Ezzatti, P., Quintana-Ortí, E.S. (2018). Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative for Sparse GPU Computations. In: Mocskos, E., Nesmachnow, S. (eds) High Performance Computing. CARLA 2017. Communications in Computer and Information Science, vol 796. Springer, Cham. https://doi.org/10.1007/978-3-319-73353-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73353-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73352-4

  • Online ISBN: 978-3-319-73353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics