Skip to main content

Targeting Therapeutic Nucleic Acids into Mitochondria: A Long Challenge

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria resulted from an endosymbiosis event and subsequently kept their own genome. In the course of evolution, the mitochondrial DNA shrunk down but it still encodes essential components of the oxidative phosphorylation chain. Point mutations and deletions in the human mitochondrial DNA cause severe incurable neurodegenerative diseases and accumulate during aging. Rearrangements in the plant mitochondrial genome contribute to evolution and agronomical traits. Development of human mitochondrial gene therapy strategies or plant mitochondrial biotechnologies suffer from the inability of conventional methodologies to genetically transform mitochondria. The importance of these issues led to the development of a large set of alternative strategies aiming to target DNA or RNA into mitochondria, mainly in mammalian cells. A first group relied on natural RNA uptake pathways of mitochondria, using tRNA derivatives, tRNA mimics, 5S rRNA, and stem-loop structures of RNase P and RNase MRP RNAs as import shuttles, or taking a special RNA import complex as a carrier. Other strategies took advantage of the regular protein uptake pathway of mitochondria to design a series of DNA or RNA-binding plaforms driven to the organelles by mitochondrial targeting peptides. In a third category of approaches, elaborate DNA-binding lipophilic vesicles were rendered mitochondriotropic and served as carriers for organelle targeting. Finally, atypical protocols like hydrodynamic vein injection and magnetofection were adapted for the challenge. A number of these methodologies were claimed to be successful on the basis of functional or genetic observations, but there is still little consensus in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236–250

    Article  CAS  PubMed  Google Scholar 

  • Baum DA, Baum B (2014) An inside-out origin for the eukaryotic cell. BMC Biol 12:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya SN, Chatterjee S, Goswami S, Tripathi G, Dey SN, Adhya S (2003) “Ping-pong” interactions between mitochondrial tRNA import receptors within a multiprotein complex. Mol Cell Biol 23:5217–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GG, Torchilin VP, Weissig V (2005) Mitochondriotropic liposomes. J Liposome Res 15:49–58

    Article  CAS  PubMed  Google Scholar 

  • Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain JR, Lee Y, Lane WS, Engelke DR (1998) Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 12:1678–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DD, Clayton DA (1987) A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. Science 235:1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Chang DD, Clayton DA (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56:131–139

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Home P, Mukherjee S, Mahata B, Goswami S, Dhar G, Adhya S (2006) An RNA-binding respiratory component mediates import of type II tRNAs into Leishmania mitochondria. J Biol Chem 281:25270–25277

    Article  CAS  PubMed  Google Scholar 

  • Chen XJ (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 77:476–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou ST, Hom K, Zhang D, Leng Q, Tricoli LJ, Hustedt JM, Lee A, Shapiro MJ, Seog J, Kahn JD, Mixson AJ (2014) Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds. Biomaterials 35:846–855

    Article  CAS  PubMed  Google Scholar 

  • Chuah JA, Yoshizumi T, Kodama Y, Numata K (2015) Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep 5:7751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuah JA, Matsugami A, Hayashi F, Numata K (2016) Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. Biomacromolecules 17:3547–3557

    Article  CAS  PubMed  Google Scholar 

  • Comte C, Tonin Y, Heckel-Mager AM, Boucheham A, Smirnov A, Aure K, Lombes A, Martin RP, Entelis N, Tarassov I (2013) Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre syndrome. Nucleic Acids Res 41:418–433

    Article  CAS  PubMed  Google Scholar 

  • D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–197

    Article  PubMed  CAS  Google Scholar 

  • D’Souza GG, Boddapati SV, Weissig V (2005) Mitochondrial leader sequence—plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5:352–358

    Article  PubMed  CAS  Google Scholar 

  • D’Souza GG, Boddapati SV, Weissig V (2007) Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 24:228–238

    Article  PubMed  CAS  Google Scholar 

  • Dang YL, Martin NC (1993) Yeast mitochondrial RNase P. Sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme. J Biol Chem 268:19791–19796

    CAS  PubMed  Google Scholar 

  • Dietrich A, Maréchal-Drouard L, Carneiro V, Cosset A, Small I (1996) A single base change prevents import of cytosolic tRNA(Ala) into mitochondria in transgenic plants. Plant J 10:913–918

    Article  CAS  PubMed  Google Scholar 

  • Doersen CJ, Guerrier-Takada C, Altman S, Attardi G (1985) Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem 260:5942–5949

    CAS  PubMed  Google Scholar 

  • Dovydenko I, Tarassov I, Venyaminova A, Entelis N (2016) Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: lipophilic conjugates with cleavable bonds. Biomaterials 76:408–417

    Article  CAS  PubMed  Google Scholar 

  • Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. Chembiochem 12:132–137

    Article  CAS  PubMed  Google Scholar 

  • Elson JL, Lightowlers RN (2006) Mitochondrial DNA clonality in the dock: can surveillance swing the case? Trends Genet 22:603–607

    Article  CAS  PubMed  Google Scholar 

  • Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA (2001) 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 276:45642–45653

    Article  CAS  PubMed  Google Scholar 

  • Eyre-Walker A (2017) Mitochondrial replacement therapy: are mito-nuclear interactions likely to be a problem? Genetics 205:1365–1372

    Article  PubMed  Google Scholar 

  • Farre JC, Aknin C, Araya A, Castandet B (2012) RNA editing in mitochondrial trans-introns is required for splicing. PLoS One 7:e52644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC (2003) Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Yamada Y, Kawamura E, Harashima H (2015) Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 57:107–115

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Dhar G, Mukherjee S, Mahata B, Chatterjee S, Home P, Adhya S (2006) A bifunctional tRNA import receptor from Leishmania mitochondria. Proc Natl Acad Sci U S A 103:8354–8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzeskowiak BF, Sanchez-Antequera Y, Hammerschmid E, Doblinger M, Eberbeck D, Wozniak A, Slomski R, Plank C, Mykhaylyk O (2015) Nanomagnetic activation as a way to control the efficacy of nucleic acid delivery. Pharm Res 32:103–121

    Article  CAS  PubMed  Google Scholar 

  • Gualberto JM, Newton KJ (2017) Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252

    Article  CAS  PubMed  Google Scholar 

  • Hagstrom JE, Hegge J, Zhang G, Noble M, Budker V, Lewis DL, Herweijer H, Wolff JA (2004) A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10:386–398

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Cid A, Aguirre-Sampieri S, Diaz-Vilchis A, Torres-Larios A (2012) Ribonucleases P/MRP and the expanding ribonucleoprotein world. IUBMB Life 64:521–528

    Article  CAS  PubMed  Google Scholar 

  • Hinrichsen I, Bolle N, Paun L, Kempken F (2009) RNA processing in plant mitochondria is independent of transcription. Plant Mol Biol 70:663–668

    Article  CAS  PubMed  Google Scholar 

  • Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19(Pt B):198–205

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19(Pt B):282–288

    Article  CAS  PubMed  Google Scholar 

  • Iyer S, Thomas RR, Portell FR, Dunham LD, Quigley CK, Bennett JP Jr (2009) Recombinant mitochondrial transcription factor A with N-terminal mitochondrial transduction domain increases respiration and mitochondrial gene expression. Mitochondrion 9:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer S, Bergquist K, Young K, Gnaiger E, Rao RR, Bennett JP Jr (2012a) Mitochondrial gene therapy improves respiration, biogenesis, and transcription in G11778A Leber’s hereditary optic neuropathy and T8993G Leigh’s syndrome cells. Hum Gene Ther 23:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer S, Xiao E, Alsayegh K, Eroshenko N, Riggs MJ, Bennett JP Jr, Rao RR (2012b) Mitochondrial gene replacement in human pluripotent stem cell-derived neural progenitors. Gene Ther 19:469–475

    Article  CAS  PubMed  Google Scholar 

  • Jash S, Adhya S (2011) Suppression of reactive oxygen species in cells with multiple mitochondrial DNA deletions by exogenous protein-coding RNAs. Mitochondrion 11:607–614

    Article  CAS  PubMed  Google Scholar 

  • Jash S, Adhya S (2012) Induction of muscle regeneration by RNA-mediated mitochondrial restoration. FASEB J 26:4187–4197

    Article  CAS  PubMed  Google Scholar 

  • Jash S, Chowdhury T, Adhya S (2012) Modulation of mitochondrial respiratory capacity by carrier-mediated transfer of RNA in vivo. Mitochondrion 12:262–270

    Article  CAS  PubMed  Google Scholar 

  • Jash S, Dhar G, Ghosh U, Adhya S (2014) Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs. Mol Cell Biol 34:3594–3606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, Shin JH, Lee Y (2015) Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015:305716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombes A, Boucheham A, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I (2011) Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 39:8173–8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppila JH, Stewart JB (2015) Mitochondrial DNA: radically free of free-radical driven mutations. Biochim Biophys Acta 1847:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Keeney PM, Quigley CK, Dunham LD, Papageorge CM, Iyer S, Thomas RR, Schwarz KM, Trimmer PA, Khan SM, Portell FR, Bergquist KE, Bennett JP Jr (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther 20:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SM, Bennett JP Jr (2004) Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr 36:387–393

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Zhang M, Lu JJ, Xu F, Chen BA, Xing L, Jiang HL (2016) PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier. J Drug Target 24:457–467

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Filipowicz W (1992) Evidence against a mitochondrial location of the 7-2/MRP RNA in mammalian cells. Cell 70:11–16

    Article  CAS  PubMed  Google Scholar 

  • Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA (2016) The diversity of ribonuclease P: protein and RNA catalysts with analogous biological functions. Biomol Ther 6:E27

    Google Scholar 

  • Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, Martin RP, Tarassov I (2004) Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 13:2519–2534

    Article  CAS  PubMed  Google Scholar 

  • Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, Tarassov I, Entelis N (2010) Selection of RNA aptamers imported into yeast and human mitochondria. RNA 16:926–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koley S, Adhya S (2013) A voltage-gated pore for translocation of tRNA. Biochem Biophys Res Commun 439:23–29

    Article  CAS  PubMed  Google Scholar 

  • Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 15:143–154

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Choi JS, Choi MJ, Pak YK, Rhee BD, Ko KS (2007) DNA delivery to the mitochondria sites using mitochondrial leader peptide conjugated polyethylenimine. J Drug Target 15:115–122

    Article  CAS  PubMed  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117:2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Goldgeier L, Zhu J, Cambell P, Ambulos N, Mixson AJ (2007) Histidine-lysine peptides as carriers of nucleic acids. Drug News Perspect 20:77–86

    Article  CAS  PubMed  Google Scholar 

  • Li W, Nicol F, Szoka FC Jr (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56:967–985

    Article  CAS  PubMed  Google Scholar 

  • Lightowlers RN (2011) Mitochondrial transformation: time for concerted action. EMBO Rep 12:480–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Wierzbicki S, Krasilnikov AS, Schmitt ME (2010) Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components. RNA 16:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyrawati D, Trounson A, Cram D (2011) Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 28:2848–2862

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes PJ, Andreu AL, Schon EA (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell 9:2375–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata B, Bhattacharyya SN, Mukherjee S, Adhya S (2005) Correction of translational defects in patient-derived mutant mitochondria by complex-mediated import of a cytoplasmic tRNA. J Biol Chem 280:5141–5144

    Article  CAS  PubMed  Google Scholar 

  • Mahata B, Mukherjee S, Mishra S, Bandyopadhyay A, Adhya S (2006) Functional delivery of a cytosolic tRNA into mutant mitochondria of human cells. Science 314:471–474

    Article  CAS  PubMed  Google Scholar 

  • Mahato B, Jash S, Adhya S (2011) RNA-mediated restoration of mitochondrial function in cells harboring a Kearns Sayre syndrome mutation. Mitochondrion 11:564–574

    Article  CAS  PubMed  Google Scholar 

  • Marlow FL (2017) Mitochondrial matters: mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res 21:178–186

    Article  CAS  PubMed  Google Scholar 

  • Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond Ser B Biol Sci 370:20140330

    Article  CAS  Google Scholar 

  • Matsuda D, Dreher TW (2004) The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321:36–46

    Article  CAS  PubMed  Google Scholar 

  • Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A (2011) Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 39:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Basu S, Home P, Dhar G, Adhya S (2007) Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. EMBO Rep 8:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Mahata B, Mahato B, Adhya S (2008) Targeted mRNA degradation by complex-mediated delivery of antisense RNAs to intracellular human mitochondria. Hum Mol Genet 17:1292–1298

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee J, Mahato B, Adhya S (2014) Vesicular transport of a ribonucleoprotein to mitochondria. Biol Open 3:1083–1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Otten AB, Smeets HJ (2015) Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 21:671–689

    Article  CAS  PubMed  Google Scholar 

  • Paris Z, Rubio MA, Lukes J, Alfonzo JD (2009) Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein. RNA 15:1398–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne BA, Chinnery PF (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta 1847:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto M, Moraes CT (2015) Mechanisms linking mtDNA damage and aging. Free Radic Biol Med 85:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puranam RS, Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21:548–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rulli T (2017) The mitochondrial replacement ‘therapy’ myth. Bioethics 31:368–374

    Article  PubMed  Google Scholar 

  • Salinas T, Duchêne AM, Maréchal-Drouard L (2008) Recent advances in tRNA mitochondrial import. Trends Biochem Sci 33:320–329

    Article  CAS  PubMed  Google Scholar 

  • Sbicego S, Nabholz CE, Hauser R, Blum B, Schneider A (1998) In vivo import of unspliced tRNATyr containing synthetic introns of variable length into mitochondria of Leishmania tarentolae. Nucleic Acids Res 26:5251–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpelli M, Todeschini A, Volonghi I, Padovani A, Filosto M (2017) Mitochondrial diseases: advances and issues. Appl Clin Genet 10:21–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider A (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem 80:1033–1053

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Maréchal-Drouard L (2000) Mitochondrial tRNA import: are there distinct mechanisms? Trends Cell Biol 10:509–513

    Article  CAS  PubMed  Google Scholar 

  • Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H (1995) Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibel M, Bachmann C, Schmiedel J, Wilken N, Wilde F, Reichmann H, Isaya G, Seibel P, Pfeiler D (1999) Processing of artificial peptide-DNA-conjugates by the mitochondrial intermediate peptidase (MIP). Biol Chem 380:961–967

    Article  CAS  PubMed  Google Scholar 

  • Sieber F, Duchêne AM, Maréchal-Drouard L (2011a) Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. Int Rev Cell Mol Biol 287:145–190

    Article  CAS  PubMed  Google Scholar 

  • Sieber F, Placido A, El Farouk-Ameqrane S, Duchêne AM, Maréchal-Drouard L (2011b) A protein shuttle system to target RNA into mitochondria. Nucleic Acids Res 39:e96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small I, Maréchal-Drouard L, Masson J, Pelletier G, Cosset A, Weil JH, Dietrich A (1992) In vivo import of a normal or mutagenized heterologous transfer RNA into the mitochondria of transgenic plants: towards novel ways of influencing mitochondrial gene expression? EMBO J 11:1291–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnov A, Tarassov I, Mager-Heckel AM, Letzelter M, Martin RP, Krasheninnikov IA, Entelis N (2008) Two distinct structural elements of 5S rRNA are needed for its import into human mitochondria. RNA 14:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnov A, Entelis N, Martin RP, Tarassov I (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Genes Dev 25:1289–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M (2017) Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol. https://doi.org/10.1002/jat.3476

  • Suzuki Y (2012) Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology. Sensors (Basel) 12:549–572

    Article  CAS  Google Scholar 

  • Tai N, Ding Y, Schmitz JC, Chu E (2002) Identification of critical amino acid residues on human dihydrofolate reductase protein that mediate RNA recognition. Nucleic Acids Res 30:4481–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai N, Schmitz JC, Chen TM, O’Neill MB, Chu E (2008) Identification of a cis-acting element of human dihydrofolate reductase mRNA. Biochem Biophys Res Commun 369:795–800

    Article  CAS  PubMed  Google Scholar 

  • Tarassov IA, Entelis NS (1992) Mitochondrially-imported cytoplasmic tRNA(Lys)(CUU) of Saccharomyces cerevisiae: in vivo and in vitro targetting systems. Nucleic Acids Res 20:1277–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RR, Khan SM, Portell FR, Smigrodzki RM, Bennett JP Jr (2011) Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 11:108–118

    Article  CAS  PubMed  Google Scholar 

  • Tonin Y, Heckel AM, Vysokikh M, Dovydenko I, Meschaninova M, Rotig A, Munnich A, Venyaminova A, Tarassov I, Entelis N (2014) Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 289:13323–13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19(Pt B):166–171

    Article  CAS  PubMed  Google Scholar 

  • Val R, Wyszko E, Valentin C, Szymanski M, Cosset A, Alioua M, Dreher TW, Barciszewski J, Dietrich A (2011) Organelle trafficking of chimeric ribozymes and genetic manipulation of mitochondria. Nucleic Acids Res 39:9262–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestweber D, Schatz G (1989) DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338:170–172

    Article  CAS  PubMed  Google Scholar 

  • Wagle MA, Martinville LE, D’Souza GG (2011) The utility of an isolated mitochondrial fraction in the preparation of liposomes for the specific delivery of bioactives to mitochondria in live mammalian cells. Pharm Res 28:2790–2796

    Article  CAS  PubMed  Google Scholar 

  • Walker SC, Engelke DR (2008) A protein-only RNase P in human mitochondria. Cell 135:412–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC 3rd, Koehler CM, Teitell MA (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Shimada E, Koehler CM, Teitell MA (2012a) PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta 1819:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, Koehler CM (2012b) Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A 109:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber-Lotfi F, Koulintchenko MV, Ibrahim N, Hammann P, Mileshina DV, Konstantinov YM, Dietrich A (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways. Biochim Biophys Acta 1853:3165–3181

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J (1998) DQAsomes: a novel potential drug and gene delivery system made from dequalinium. Pharm Res 15:334–337

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Lizano C, Torchilin VP (2000) Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv 7:1–5

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, D’Souza GG, Torchilin VP (2001) DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release 75:401–408

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Boddapati SV, Cheng SM, D’Souza GG (2006) Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria. J Liposome Res 16:249–264

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060815-014352

  • Xu L, Shi R (2016) Weigh and wait: the prospect of mitochondrial gene replacement. Hum Fertil (Camb) 19:222–229

    Article  CAS  Google Scholar 

  • Yamada Y, Harashima H (2012) Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 33:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Harashima H (2013) Enhancement in selective mitochondrial association by direct modification of a mitochondrial targeting signal peptide on a liposomal based nanocarrier. Mitochondrion 13:526–532

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H (2008) MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 1778:423–432

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Furukawa R, Yasuzaki Y, Harashima H (2011) Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19:1449–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Kawamura E, Harashima H (2012) Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes. J Nanopart Res 14:1013

    Article  CAS  Google Scholar 

  • Yamada Y, Fukuda Y, Harashima H (2015) An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles. Mitochondrion 24:50–55

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Furukawa R, Harashima H (2016) A dual-ligand liposomal system composed of a cell-penetrating peptide and a mitochondrial RNA aptamer synergistically facilitates cellular uptake and mitochondrial targeting. J Pharm Sci 105:1705–1713

    Article  CAS  PubMed  Google Scholar 

  • Yasuzaki Y, Yamada Y, Harashima H (2010) Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem Biophys Res Commun 397:181–186

    Article  CAS  PubMed  Google Scholar 

  • Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H (2013) Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release 172:805–811

    Article  CAS  PubMed  Google Scholar 

  • Yasuzaki Y, Yamada Y, Fukuda Y, Harashima H (2014) Condensation of plasmid DNA enhances mitochondrial association in skeletal muscle following hydrodynamic limb vein injection. Pharmaceuticals (Basel) 7:881–893

    Article  CAS  Google Scholar 

  • Yasuzaki Y, Yamada Y, Ishikawa T, Harashima H (2015) Validation of mitochondrial gene delivery in liver and skeletal muscle via hydrodynamic injection using an artificial mitochondrial reporter DNA vector. Mol Pharm 12:4311–4320

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, Boye SL, Boye SE, Hauswirth WW, Lewin AS, Guy J (2012a) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A 109:E1238–E1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Ozdemir SS, Koilkonda RD, Chou TH, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Lewin AS, Guy J (2012b) Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Mol Vis 18:1668–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Mehta A, Wang G, Hauswirth WW, Chiodo V, Boye SL, Guy J (2013) Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice. Mol Vis 19:1482–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, Chiodo VA, Boye SL, Hauswirth WW, Lewin AS, Guy J (2015) Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci U S A 112:E5689–E5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenka J, Jezek P (2016) Import of fluorescent RNA into mitochondria of living cells. Methods Mol Biol 1351:175–181

    Article  CAS  PubMed  Google Scholar 

  • Zelenka J, Alan L, Jaburek M, Jezek P (2014) Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA. J Bioenerg Biomembr 46:147–156

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Liu L, Chen J (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 9:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge support of our work by the French Centre National de la Recherche Scientifique (CNRS, UPR2357), the University of Strasbourg, the Agence Nationale de la Recherche (grant numbers ANR-06-MRAR-037-02, ANR-09-BLAN-0240-01) and the Ministère de la Recherche et de l’Enseignement Supérieur (Investissements d’Avenir/Laboratoire d’Excellence MitoCross, grant number ANR-11-LABX-0057_MITOCROSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weber-Lotfi, F., Dietrich, A. (2018). Targeting Therapeutic Nucleic Acids into Mitochondria: A Long Challenge. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_25

Download citation

Publish with us

Policies and ethics