Advertisement

Modulation of Cell Fate by Tauroursodeoxycholic Acid: All Paths Lead to Mitochondria

  • Susana Solá
  • Maria F. Ribeiro
  • Tânia Genebra
  • Cecília M. P. Rodrigues
Chapter

Abstract

Specific endogenous bile acids, such as ursodeoxycholic (UDCA) acid and its taurine conjugated form, tauroursodeoxycholic acid (TUDCA), are potent modulators of cell fate by regulating pathways that involve mitochondria. Curiously, emerging evidence suggests that mitochondrial changes induced by TUDCA result from its influence on mitochondrial redox state, mitochondrial membrane permeabilization, mitochondrial apoptosis and mitophagy. In fact, the pleiotropic cellular function of TUDCA ranges from its direct interaction with mitochondrial membranes to modulation of kinase survival pathways or gene expression that ultimately impact on mitochondria. Further, regulation of the functional endoplasmatic reticulum (ER)-mitochondria unit by this bile acid has also been proven as a key counterpart of mitochondria-targeted TUDCA effect. In this chapter, we summarize mechanisms by which this hydrophilic bile acid affects mitochondria and subsequently cell survival, cell cycle and differentiation. We also discuss the potential therapeutic application of TUDCA in several pathological conditions associated with mitochondrial dysfunction.

Keywords

Bile acids Ursodeoxycholic acid Tauroursodeoxycholic acid Cell cycle Cell death Mitochondria 

Notes

Acknowledgements

We would like to thank all our laboratory colleagues for their support and insightful discussions.

Declaration of Conflicting Interests

 The authors declared no potential conflicts of interest with respect to the authorship, and/or publication of this article.

References

  1. Ben Mosbah I, Alfany-Fernandez I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, Rodes J, Brenner C, Rosello-Catafau J, Peralta C (2010) Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 1:e52CrossRefPubMedGoogle Scholar
  2. Bergmann A (2002) Survival signaling goes BAD. Dev Cell 3(5):607–608CrossRefPubMedGoogle Scholar
  3. Castro RE, Sola S, Ramalho RM, Steer CJ, Rodrigues CM (2004) The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons. J Pharmacol Exp Ther 311(2):845–852CrossRefPubMedGoogle Scholar
  4. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20(50):7342–7351CrossRefPubMedGoogle Scholar
  5. Chao de la Barca JM, Simard G, Amati-Bonneau P, Safiedeen Z, Prunier-Mirebeau D, Chupin S, Gadras C, Tessier L, Gueguen N, Chevrollier A, Desquiret-Dumas V, Ferre M, Bris C, Kouassi Nzoughet J, Bocca C, Leruez S, Verny C, Milea D, Bonneau D, Lenaers G, Martinez MC, Procaccio V, Reynier P (2016) The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain 139(11):2864–2876CrossRefPubMedGoogle Scholar
  6. Chen C, Edelstein LC, Gelinas C (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20(8):2687–2695CrossRefPubMedPubMedCentralGoogle Scholar
  7. Colell A, Coll O, Garcia-Ruiz C, Paris R, Tiribelli C, Kaplowitz N, Fernandez-Checa JC (2001) Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor-induced cell death by replenishing mitochondrial glutathione. Hepatology 34(5):964–971CrossRefPubMedGoogle Scholar
  8. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241CrossRefPubMedGoogle Scholar
  9. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927CrossRefPubMedGoogle Scholar
  10. Debattisti V, Pendin D, Ziviani E, Daga A, Scorrano L (2014) Reduction of endoplasmic reticulum stress attenuates the defects caused by Drosophila mitofusin depletion. J Cell Biol 204(3):303–312CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deng X, Gao F, May WS Jr (2003) Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102(9):3179–3185CrossRefPubMedGoogle Scholar
  12. Dromparis P, Paulin R, Stenson TH, Haromy A, Sutendra G, Michelakis ED (2013) Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 127(1):115–125CrossRefPubMedGoogle Scholar
  13. Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson's disease. Cell Transplant 11(3):195–205Google Scholar
  14. Elia AE, Lalli S, Monsurro MR, Sagnelli A, Taiello AC, Reggiori B, La Bella V, Tedeschi G, Albanese A (2016) Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol 23(1):45–52CrossRefPubMedGoogle Scholar
  15. Falasca L, Tisone G, Palmieri G, Anselmo A, Di Paolo D, Baiocchi L, Torri E, Orlando G, Casciani CU, Angelico M (2001) Protective role of tauroursodeoxycholate during harvesting and cold storage of human liver: a pilot study in transplant recipients. Transplantation 71(9):1268–1276CrossRefPubMedGoogle Scholar
  16. Finkel T, Hwang PM (2009) The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci U S A 106(29):11825–11826CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fonseca I, Gordino G, Moreira S, Nunes MJ, Azevedo C, Gama MJ, Rodrigues E, Rodrigues CM, Castro-Caldas M (2016) Tauroursodeoxycholic acid protects against mitochondrial dysfunction and cell death via mitophagy in human neuroblastoma cells. Mol Neurobiol 54(8):6107–6119CrossRefPubMedGoogle Scholar
  18. Gaspar JM, Martins A, Cruz R, Rodrigues CM, Ambrosio AF, Santiago AR (2013) Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience 253:380–388CrossRefPubMedGoogle Scholar
  19. Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823(2):327–334CrossRefPubMedGoogle Scholar
  20. Gupta S, Li S, Abedin MJ, Noppakun K, Wang L, Kaur T, Najafian B, Rodrigues CM, Steer CJ (2012) Prevention of acute kidney injury by tauroursodeoxycholic acid in rat and cell culture models. PLoS One 7(11):e48950CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hohenester S, Oude-Elferink RP, Beuers U (2009) Primary biliary cirrhosis. Semin Immunopathol 31(3):283–307CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ishigami F, Naka S, Takeshita K, Kurumi Y, Hanasawa K, Tani T (2001) Bile salt tauroursodeoxycholic acid modulation of Bax translocation to mitochondria protects the liver from warm ischemia-reperfusion injury in the rat. Transplantation 72(11):1803–1807CrossRefPubMedGoogle Scholar
  23. Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC (2001) A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington's disease. Exp Neurol 171(2):351–360CrossRefPubMedGoogle Scholar
  24. Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease. Proc Natl Acad Sci U S A 99(16):10671–10676CrossRefPubMedPubMedCentralGoogle Scholar
  25. Khoo KH, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13(3):217–236CrossRefPubMedGoogle Scholar
  26. Krahenbuhl S, Fischer S, Talos C, Reichen J (1994) Ursodeoxycholate protects oxidative mitochondrial metabolism from bile acid toxicity: dose-response study in isolated rat liver mitochondria. Hepatology 20(6):1595–1601CrossRefPubMedGoogle Scholar
  27. Martinez L, Torres S, Baulies A, Alarcon-Vila C, Elena M, Fabrias G, Casas J, Caballeria J, Fernandez-Checa JC, Garcia-Ruiz C (2015) Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 6(39):41479–41496CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mello-Vieira J, Sousa T, Coutinho A, Fedorov A, Lucas SD, Moreira R, Castro RE, Rodrigues CM, Prieto M, Fernandes F (2013) Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. Biochim Biophys Acta 1828(9):2152–2163CrossRefPubMedGoogle Scholar
  29. Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58(12):2863–2872CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of alpha-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis 4:e582CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, Carvalho AN, Outeiro TF, Rodrigues CMP, Gama MJ, Castro-Caldas M (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Exp Neurol 295:77–87CrossRefPubMedGoogle Scholar
  32. Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease. Brain 136(Pt 10):3038–3050CrossRefPubMedGoogle Scholar
  33. Mortiboys H, Furmston R, Bronstad G, Aasly J, Elliott C, Bandmann O (2015) UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2(G2019S) carriers and in vivo. Neurology 85(10):846–852CrossRefPubMedPubMedCentralGoogle Scholar
  34. Neuman MG, Cameron RG, Shear NH, Bellentani S, Tiribelli C (1995) Effect of tauroursodeoxycholic and ursodeoxycholic acid on ethanol-induced cell injuries in the human Hep G2 cell line. Gastroenterology 109(2):555–563CrossRefPubMedGoogle Scholar
  35. Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D'Hooge R, Rodrigues CM (2012) TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol Neurobiol 45(3):440–454CrossRefPubMedGoogle Scholar
  36. Oveson BC, Iwase T, Hackett SF, Lee SY, Usui S, Sedlak TW, Snyder SH, Campochiaro PA, Sung JU (2011) Constituents of bile, bilirubin and TUDCA, protect against oxidative stress-induced retinal degeneration. J Neurochem 116(1):144–153CrossRefPubMedGoogle Scholar
  37. Owusu-Ansah E, Yavari A, Mandal S, Banerjee U (2008) Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 40(3):356–361CrossRefPubMedGoogle Scholar
  38. Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC (2016) There's something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. Trends Neurosci 39(3):146–157CrossRefPubMedPubMedCentralGoogle Scholar
  39. Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ (2010) Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 33(1):17–21CrossRefPubMedGoogle Scholar
  40. Ramalho RM, Borralho PM, Castro RE, Sola S, Steer CJ, Rodrigues CM (2006) Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant neuroblastoma cells. J Neurochem 98(5):1610–1618CrossRefPubMedGoogle Scholar
  41. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101(12):2790–2799CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rodrigues CM, Stieers CL, Keene CD, Ma X, Kren BT, Low WC, Steer CJ (2000) Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J Neurochem 75(6):2368–2379CrossRefPubMedGoogle Scholar
  43. Rodrigues CM, Sola S, Brito MA, Brondino CD, Brites D, Moura JJ (2001) Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem Biophys Res Commun 281(2):468–474CrossRefPubMedGoogle Scholar
  44. Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab 22(4):463–471CrossRefPubMedGoogle Scholar
  45. Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003a) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rodrigues CM, Sola S, Sharpe JC, Moura JJ, Steer CJ (2003b) Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry 42(10):3070–3080CrossRefPubMedGoogle Scholar
  47. Rosa AI, Fonseca I, Nunes MJ, Moreira S, Rodrigues E, Carvalho AN, Rodrigues CMP, Gama MJ, Castro-Caldas M (2017) Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson's disease. Biochim Biophys Acta 1863(9):2171–2181CrossRefPubMedGoogle Scholar
  48. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11(4):173–186CrossRefPubMedGoogle Scholar
  49. Schoemaker MH, Conde de la Rosa L, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, Haisma HJ, Jansen PL, Moshage H (2004) Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 39(6):1563–1573CrossRefPubMedGoogle Scholar
  50. Schulz S, Schmitt S, Wimmer R, Aichler M, Eisenhofer S, Lichtmannegger J, Eberhagen C, Artmann R, Tookos F, Walch A, Krappmann D, Brenner C, Rust C, Zischka H (2013) Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochim Biophys Acta 1828(9):2121–2133CrossRefPubMedGoogle Scholar
  51. Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14(12):2545–2579CrossRefPubMedPubMedCentralGoogle Scholar
  52. Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastião AM, Rodrigues CMP, Solá S (2017) Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool and early neurogenesis in adult rats. Mol Neurobiol. (in press).  https://doi.org/10.1007/s12035-017-0592-5
  53. Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE, Gumpricht E (2005) Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr 41(2):235–243CrossRefPubMedGoogle Scholar
  54. Sola S, Castro RE, Laires PA, Steer CJ, Rodrigues CM (2003) Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med 9(9–12):226–234PubMedPubMedCentralGoogle Scholar
  55. Sola S, Amaral JD, Aranha MM, Steer CJ, Rodrigues CM (2006a) Modulation of hepatocyte apoptosis: cross-talk between bile acids and nuclear steroid receptors. Curr Med Chem 13(25):3039–3051CrossRefPubMedGoogle Scholar
  56. Sola S, Amaral JD, Borralho PM, Ramalho RM, Castro RE, Aranha MM, Steer CJ, Rodrigues CM (2006b) Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid {beta}-peptide-induced apoptosis. Mol Endocrinol 10:2292–2303CrossRefGoogle Scholar
  57. Sousa T, Castro RE, Pinto SN, Coutinho A, Lucas SD, Moreira R, Rodrigues CM, Prieto M, Fernandes F (2015) Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. J Lipid Res 56(11):2158–2171CrossRefPubMedPubMedCentralGoogle Scholar
  58. Turdi S, Hu N, Ren J (2013) Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies. PLoS One 8(5):e63615CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vang S, Longley K, Steer CJ, Low WC (2014) The unexpected uses of Urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med 3(3):58–69CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ved R, Saha S, Westlund B, Perier C, Burnam LG, Sluder A, Hoener M, Mp Rodrigues C, Alfonso A, Steer C, Liu L, Przedborski S, Wolozin B (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha -synuclein, parkin and DJ-1 in C. elegans. J Biol Chem 280(52):42655–42668CrossRefPubMedPubMedCentralGoogle Scholar
  61. Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, Rostagno A, Rodrigues CM (2009) Tauroursodeoxycholic acid prevents E22Q Alzheimer's Abeta toxicity in human cerebral endothelial cells. Cell Mol Life Sci 66(6):1094–1104CrossRefPubMedPubMedCentralGoogle Scholar
  62. Xavier JM, Morgado AL, Rodrigues CM, Sola S (2014) Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling. Cell Cycle 13(22):3576–3589CrossRefPubMedPubMedCentralGoogle Scholar
  63. Xavier JM, Rodrigues CM, Sola S (2016) Mitochondria: major regulators of neural development. Neuroscientist 22(4):346–358CrossRefPubMedGoogle Scholar
  64. Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B (2002) Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 36(3):592–601CrossRefPubMedGoogle Scholar
  65. Xie Q, Li GM, Zhou XQ, Liao D, Yu H, Guo Q (2003) Effect of Tauroursodeoxycholic acid on cytochrome C-mediated apoptosis in HepG2 cells. Zhonghua Gan Zang Bing Za Zhi 11(5):298–301PubMedGoogle Scholar
  66. Xu LH, Xie H, Shi ZH, Du LD, Wing YK, Li AM, Ke Y, Yung WH (2015) Critical role of endoplasmic reticulum stress in chronic intermittent hypoxia-induced deficits in synaptic plasticity and long-term memory. Antioxid Redox Signal 23(9):695–710CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, Kim JS, Cho MH (2015) Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS One 10(6):e0131208CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhang W, Steer CJ, Douglas KT, Rodrigues CM (2006) Binding studies of bile acids using the native fluorescence of the tryptophan residue Of Bax protein. Biosci Rep 26(3):245–250CrossRefPubMedGoogle Scholar
  69. Zhang Y, Xia Z, La Cour KH, Ren J (2011) Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeation pore opening. Antioxid Redox Signal 15(9):2407–2424CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhou L, Jiang L, Xu M, Liu Q, Gao N, Li P, Liu EH (2016) Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Sci Rep 6:20585CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Susana Solá
    • 1
  • Maria F. Ribeiro
    • 1
  • Tânia Genebra
    • 1
  • Cecília M. P. Rodrigues
    • 1
  1. 1.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal

Personalised recommendations