Skip to main content

Potential Mechanisms of Mitochondrial DNA Mediated Acquired Mitochondrial Disease

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria are cellular organelles which contain mitochondrial DNA (MtDNA) in the form of an extranuclear genome. MtDNA can be present in 100s to thousands to copies per cell in the body depending on the bioenergetic requirements of the host cell. MtDNA encodes subunits of the electron transport chain and therefore is required to produce cellular energy in the form of ATP. However, MtDNA can also act as an inflammatory molecule since it resembles bacterial DNA, resulting in activation of pathways leading to enhanced cytokine production and chronic inflammation. In the current chapter, we suggest that MtDNA mediated mechanisms that cause systemic mitochondrial dysfunction are involved in many common diseases not traditionally recognised as mitochondrial disease, and we suggest that such disorders could be considered as “acquired mitochondrial diseases”, distinct from primary and secondary mitochondrial disease. Acquired mitochondrial diseases include cardiovascular and neurodegenerative disease as well as diabetic complications, and are associated with oxidative stress and sterile/chronic inflammation in their pathophysiology. We propose a mechanism of how systemic damage to MtDNA, mediated through oxidative stress, can cause inflammation and bioenergetic deficit. Some recent evidence of the proposed mechanism is provided for diabetic nephropathy, a complication of diabetes, which has not traditionally been regarded as a disease of mitochondrial dysfunction. According to the hypothesis proposed, it may be possible to use MtDNA levels in body fluids or cells to predict risk of acquired diseases of mitochondrial dysfunction, and to design novel therapies targeting the specific MtDNA mediated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson S, Bankier AT, Barrell BG, De Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson's disease. J Neurochem 139(Suppl 1):216–231

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyapati R, Tamborska A, Dorward D, Ho G (2017) Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases [version 1; referees: 3 approved]. F1000Res 6(F1000 Faculty Rev):169. https://doi.org/10.12688/f1000research.10397.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA (2011) Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31:4994–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartoni R, Martinou J-C (2009) Role of mitofusin 2 mutations in the physiopathology of Charcot–Marie–Tooth disease type 2A. Exp Neurol 218:268–273

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Wen S, Sun X, Fang Q, Huang L, Liu S, Li W, Qiu M (2016) Elevated mitochondrial DNA copy number in peripheral blood and tissue predict the opposite outcome of cancer: a meta-analysis. Sci Rep 6:37404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412

    Article  CAS  PubMed  Google Scholar 

  • Czajka A, Malik AN (2016) Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: implications for diabetic nephropathy. Redox Biol 10:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czajka A, Ajaz S, Gnudi L, Parsade CK, Jones P, Reid F, Malik AN (2015) Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine 2:499–512

    Article  PubMed  PubMed Central  Google Scholar 

  • D’aco KE, Manno M, Clarke C, Ganesh J, Meyers KEC, Sondheimer N (2013) Mitochondrial tRNAPhe mutation as a cause of end-stage renal disease in childhood. Pediatr Nephrol 28:515–519

    Article  PubMed  Google Scholar 

  • D'Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  • Donate-Correa J, Martin-Nunez E, Muros-de-Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF (2015) Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015:9

    Article  Google Scholar 

  • Gardner K, Hall PA, Chinnery PF, Payne BA (2014) HIV treatment and associated mitochondrial pathology: review of 25 years of in vitro, animal, and human studies. Toxicol Pathol 42:811–822

    Article  PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77:6715–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, Quintanilla B (2013) The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 5:a011080

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Cabo P, Palau F (2013) Mitochondrial pathophysiology in Friedreich's ataxia. J Neurochem 126:53–64

    Article  PubMed  Google Scholar 

  • Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, Mcfarland R (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Higgins GC, Coughlan MT (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 171:1917–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamatsu H, Robberson DL, Vinograd J (1971) A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc Natl Acad Sci U S A 68:2252–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightowlers RN, Chinnery PF, Turnbull DM, Howell N (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13:450–455

    Article  CAS  PubMed  Google Scholar 

  • Luo S-M, Schatten H, Sun Q-Y (2013) Sperm mitochondria in reproduction: good or bad and where do they go? J Genet Genomics 40:549–556

    Article  CAS  PubMed  Google Scholar 

  • Malik AN (2017) Mitochondrial DNA as a potential translational biomarker of mitochondrial dysfunction in drug induced toxicity studies. In: Dykens JA, Wills Y (eds) Drug induced mitochondrial dysfunction: progress towards the clinic. John Wiley & Sons Inc., New Jersey

    Google Scholar 

  • Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492

    Article  CAS  PubMed  Google Scholar 

  • Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, Sivaprasad S (2015) Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract 110:257–265

    Article  CAS  PubMed  Google Scholar 

  • Malik AN, Czajka A, Cunningham P (2016) Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion 29:59–64

    Article  CAS  PubMed  Google Scholar 

  • Mazzaccara C, Iafusco D, Liguori R, Ferrigno M, Galderisi A, Vitale D, Simonelli F, Landolfo P, Prisco F, Masullo M, Sacchetti L (2012) Mitochondrial diabetes in children: seek and you will find it. PLoS One 7:e34956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC, Matsumoto T, Webb RC (2015) Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res 107:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClave SA, Snider HL (2001) Dissecting the energy needs of the body. Curr Opin Clin Nutr Metab Care 4:143–147

    Article  CAS  PubMed  Google Scholar 

  • Mehta R, Chan K, Lee O, Tafazoli S, O'brien PJ (2008) Drug-associated mitochondrial toxicity. In: Dykens JA, Will Y (eds) Drug induced mitochondrial dysfunction. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  • Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P (2012) Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 227:2297–2310

    Article  CAS  PubMed  Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61–e61

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrow RM, Picard M, Derbeneva O, Leipzig J, McManus MJ, Gouspillou G, Barbat-Artigas S, dos Santos C, Hepple RT, Murdock DG, Wallace DC (2017) Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci 114:2705–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy E, Ardehali H, Balaban RS, Dilisa F, Dorn GW 2nd, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ (2016) Mitochondrial function, biology, and role in disease: a scientific statement from the American heart association. Circ Res 118:1960–1991

    Article  CAS  PubMed  Google Scholar 

  • Nakahira K, Kyung S-Y, Rogers AJ, Gazourian L, Youn S, Massaro AF, Quintana C, Osorio JC, Wang Z, Zhao Y, Lawler LA, Christie JD, Meyer NJ, Causland FRM, Waikar SS, Waxman AB, Chung RT, Bueno R, Rosas IO, Fredenburgh LE, Baron RM, Christiani DC, Hunninghake GM, Choi AMK (2014) Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 10:e1001577

    Article  Google Scholar 

  • Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyazov DM, Kahler SG, Frye RE (2016) Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 7:122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1 1This review is based on the licentiate thesis “Thioredoxin reductase—interactions with the redox active compounds 1-chloro-2,4-dinitrobenzene and lipoic acid” by Jonas Nordberg, 2001, Karolinska Institute, Stockholm, ISBN 91-631-1064-4. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydstrom J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757:721–726

    Article  PubMed  Google Scholar 

  • Schon EA, Dimauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347:576–580

    Article  PubMed  Google Scholar 

  • Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, de Sainte Foy CL, Provot F, Gheerbrant JD, Hummel A, Hazzan M, Dracon M, Dieux-Coeslier A, Copin MC, Noel C, Buob D (2013) Renal involvement in MELAS syndrome–a series of 5 cases and review of the literature. Clin Nephrol 80:456–463

    Article  PubMed  Google Scholar 

  • Selak MA, Lyver E, Micklow E, Deutsch EC, Önder Ö, Selamoglu N, Yager C, Knight S, Carroll M, Daldal F, Dancis A, Lynch DR, Sarry J-E (2011) Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion 11:342–350

    Article  CAS  PubMed  Google Scholar 

  • Semeraro F, Cancarini A, Dell’omo R, Rezzola S, Romano MR, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res 2015:16

    Article  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  CAS  PubMed  Google Scholar 

  • Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111

    Article  CAS  PubMed  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinei M, Berniakovich I, Pelicci PG, Giorgio M (2006) Mitochondrial DNA copy number is regulated by cellular proliferation: a role for Ras and p66Shc. Biochim Biophys Acta 1757:624–630

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Müller MJ (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh P, Grassia G, Botha S, Sattar N, Maffia P (2017) Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 174(22):3898–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins HM, Swerdlow RH (2016) Relationships between mitochondria and neuroinflammation: implications for Alzheimer's disease. Curr Top Med Chem 16:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Wang J, Pu C, Qiao L, Jiang C (2015) Wilson's disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 16:6419–6431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker UA. Lipoatrophy and Other Manifestations of antiretroviral therapeutics. In: J.A. D, Will Y, editors. Drug Induced Mitochondrial Dysfunction Hoboken, NJ, USA; 2008

    Google Scholar 

  • Yamanouchi S, Kudo D, Yamada M, Miyagawa N, Furukawa H, Kushimoto S (2013) Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status. J Crit Care 28:1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Anna Czajka for donating Fig. 4. HSR is supported by an EFSD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan N. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, A.N., Rosa, H.S. (2018). Potential Mechanisms of Mitochondrial DNA Mediated Acquired Mitochondrial Disease. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_14

Download citation

Publish with us

Policies and ethics