Second Analytical Chapter: Ascending with the Wave

  • Elena Tolkova
Chapter
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Highlights

Characteristics, Wave-Locked Slope (WLS), and a new form of the SWE. Analogy between a steady flow and a wave propagating into a channel. WLS balances friction. Interplay of friction and channel shape variations in amplifying/attenuating the wave. When does a wave crest keep its elevation along a river? Excursus into analytical treatment of river tides. Conventional assumptions, which we will not make. Inclinations of the High Water and Low Water trajectories. Effect of tidal WLS on a small tsunami ascending a river.

References

  1. Courant, R., & Hilbert, D. (1962). Methods of mathematical physics (Vol. II). Hoboken, NJ: Wiley-Interscience.Google Scholar
  2. Godin G. (1985). Modification of river tides by the discharge. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2), 257–274.Google Scholar
  3. Godin, G. (1999). The propagation of tides up rivers with special considerations on the upper Saint Lawrence river. Estuarine, Coastal and Shelf Science, 48, 307–324.Google Scholar
  4. Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N., & Graas, S. (2004). The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology, 294, 213–228.Google Scholar
  5. Jay, D. A. (1991). Green’s law revisited: Tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research, 96(C11), 20585–20598.Google Scholar
  6. LeBlond, P. H. (1978). On tidal propagation in shallow rivers. Journal of Geophysical Research, 83(C9), 4717–4721.Google Scholar
  7. Savenije, H. H. G., Toffolon, M., Haas, J., & Veling, E. J. M. (2008). Analytical description of tidal dynamics in convergent estuaries. Journal of Geophysical Research, 113, C10025. https://doi.org/10.1029/2007JC004408.
  8. Savenije, H. H. G. (1993). Determination of estuary parameters on the basis of Lagrangian analysis. Journal of Hydraulic Engineering, 119(5), 628–643.Google Scholar
  9. Savenije, H. H. G. (1998). Analytical expression for tidal damping in alluvial estuaries. Journal of Hydraulic Engineering, 124(6), 615–618. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(615).
  10. Savenije, H. H. G. (2001). A simple analytical expression to describe tidal damping or amplification. Journal of Hydrology, 243, 205–215. https://doi.org/10.1016/S0022-1694(00)00414-5.
  11. Savenije, H. H. G. (2012). Salinity and tides in alluvial estuaries (2nd completely revised edition). Amsterdam: Elsevier. https://salinityandtides.com.
  12. Savenije, H. H. G., Toffolon, M., Haas, J., & Veling, E. J. M. (2008). Analytical description of tidal dynamics in convergent estuaries. Journal of Geophysical Research, 113, C10025. https://doi.org/10.1029/2007JC004408.CrossRefGoogle Scholar
  13. Stoker J. J. (1957). Water waves. New York, NY: Interscience Publishers.Google Scholar
  14. Tolkova, E. (2016). Tsunami penetration in tidal rivers, with observations of the Chile 2015 tsunami in rivers in Japan. Pure and Applied Geophysics, 173(2), 389–409. https://doi.org/10.1007/s00024-015-1229-0.CrossRefGoogle Scholar
  15. Tolkova, E., Tanaka, H., & Roh, M. (2015). Tsunami observations in rivers from a perspective of tsunami interaction with tide and riverine flow. Pure and Applied Geophysics, 172(3–4), 953–968. https://doi.org/10.1007/s00024-014-1017-2 CrossRefGoogle Scholar
  16. Whitham, G. B. (1974). Linear and nonlinear waves. Hoboken, NJ: Wiley. ISBN 0-471-94090-9.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Elena Tolkova
    • 1
  1. 1.NorthWest Research Associates, IncKirklandUSA

Personalised recommendations