Pudendal Neuromodulation

  • Jason P. Gilleran
  • Natalie Gaines


Use of the pudendal nerve in modulating pelvic floor function has drawn great interest in those who regularly perform sacral neuromodulation for overactive bladder, non-obstructive urinary retention, and fecal incontinence. Since its introduction in the early 2000s, it continues to experience a “coming of age”. As a result, pudendal neuromodulation is perhaps settling into the unique role as an alternative approach to those who have failed sacral neuromodulation, or for managing some forms of chronic pelvic pain. This chapter will touch on the subtle differences between pudendal neuromodulation and other forms in animal models, but delves deep into the transperineal technique currently used by the author. We also present outcomes in smaller studies for a variety of conditions, all the while recognizing that large, multicenter, controlled studies are lacking.


Pudendal nerve Neuromodulation Pelvic pain Overactive bladder 



α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid




Gamma ammino-butyric acid


Implantable pulse generator


Ischial spine




Overactive bladder


Pudendal nerve


Pudendal neuromodulation


Pudendal nerve stimulation


Percutaneous tibial nerve stimulation


Sacral neuromodulation


Tibial nerve stimulation


  1. 1.
    Swanson LW. Neuroanatomical terminology: a lexicon of classical origins and historical foundations. Oxford: Oxford University Press; 2015.Google Scholar
  2. 2.
    Schmidt RA. Neural prostheses and bladder control. Eng Biol Med Mag. 1983;2:31.CrossRefGoogle Scholar
  3. 3.
    Vodusek B, Keith Leigh J, Libby J. Detrusor inhibition induced by stimulation of pudendal afferents. Neurourol Urodyn. 1986;5:381–9.CrossRefGoogle Scholar
  4. 4.
    Siegel SW. Management of voiding dysfunction with an implantable neuroprosthesis. Urol Clin North Am. 1992;19(1):163–70.PubMedGoogle Scholar
  5. 5.
    Shafik A, Doss SH. Pudendal canal: surgical anatomy and clinical implications. Am Surg. 1999;65(2):176–80.PubMedGoogle Scholar
  6. 6.
    Barber MD, Bremer RE, Thor KB, et al. Innervation of the female levator ani muscles. Am J Obstet Gynecol. 2002;187(1):64–71.CrossRefGoogle Scholar
  7. 7.
    Maldonado PA, Chin K, Garcia AA, et al. Anatomic variations of pudendal nerve within pelvis and pudendal canal: clinical applications. Am J Obstet Gynecol. 2015;213:727.e1–6.CrossRefGoogle Scholar
  8. 8.
    Xiao Z, Reese J, Schwen Z, et al. Role of spinal GABA-A receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am J Physiol Renal Physiol. 2014;306:F781–9.CrossRefGoogle Scholar
  9. 9.
    Schwen Z, Matsuta Y, Shen B, et al. Involvement of 5-HT3 receptors in pudendal inhibition of bladder overactivity in cats. Am J Physiol Renal Physiol. 2013;205:F663–71.CrossRefGoogle Scholar
  10. 10.
    Matsuta Y, Schwen Z, et al. Effect of methysergide on pudendal inhibition of micturition reflex in cats. Exp Neurol. 2013;247:250–8.CrossRefGoogle Scholar
  11. 11.
    Kadow BT, Lyon TD, et al. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity. Am J Physiol Renal Physiol. 2016;311(1):F78–84.CrossRefGoogle Scholar
  12. 12.
    Lyon TD, Ferroni MC, Kadow BT, et al. Pudendal but not tibial nerve stimulation inhibits bladder contractions induced by stimulation of pontine micturition center in cats. Am J Physiol Regul Integr Comp Physiol. 2016;310(4):R366–74.CrossRefGoogle Scholar
  13. 13.
    Tai C, Shen B, et al. Bladder inhibition by intermittent pudendal nerve stimulation in cat using transdermal amplitude-modulated signal (TAMS). Neurourol Urodyn. 2012;31:1181–4.CrossRefGoogle Scholar
  14. 14.
    Uy J, Yu M, et al. Glutamatergic mechanisms involved in bladder overactivity and pudendal neuromodulation in cats. J Pharmacol Exp Ther. 2017;362(1):53–8.CrossRefGoogle Scholar
  15. 15.
    Cheng CL, de Groat WC. Role of 5HT receptors in control of lower urinary tract function in anesthetized rats. Am J Physiol Renal Physiol. 2010;298(3).CrossRefGoogle Scholar
  16. 16.
    Mally AD, Matsuta Y, Zhang F, et al. Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J Urol. 2013;189(4):1574–9.CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Slater RC. Role of μ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats. J Pharmacol Exp Ther. 2015;355(2):228–34.CrossRefGoogle Scholar
  18. 18.
    Jiang X, Yu M, et al. Role of cannabinoid receptor type 1 in tibial and pudendal neuromodulation of bladder overactivity in cats. Am J Physiol Renal Physiol. 2017;312:F482–8.CrossRefGoogle Scholar
  19. 19.
    Bansal U, Fuller TW, et al. Lumbosacral spinal segmental contributions to tibial and pudendal neuromodulation of bladder overactivity in cats. Neurourol Urodyn. 2016;36(6):1496–502.CrossRefGoogle Scholar
  20. 20.
    Boggs JW, Wenzel BJ, et al. Frequency-dependent selection of reflexes by pudendal afferents in cats. J Physiol. 2006;577(1):115–26.CrossRefGoogle Scholar
  21. 21.
    Tai C, Wang J, Wang X, et al. Bladder inhibition or voiding induced by pudendal nerve stimulation in chronic spinal cord injured cats. Neurourol Urodyn. 2007;26:570–7.CrossRefGoogle Scholar
  22. 22.
    Reese JN, Rogers MJ, Xiao Z, et al. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats. Am J Physiol Renal Physiol. 2015;308(8):F832–8.CrossRefGoogle Scholar
  23. 23.
    Tian Y, Liao L, Wyndaele JJ. Inhibitory effect and possible mechanism of intraurethral stimulation on overactive bladder in female rats. Int Neurourol J. 2015;19(3):151–7.CrossRefGoogle Scholar
  24. 24.
    Jen E, Tsung-Hsun H, et al. Effects of pulsed-radiofrequency neuromodulation on rats with overactive bladder. Neurourol Urodyn. 2016;36(7):1734–41.CrossRefGoogle Scholar
  25. 25.
    Yoo PB, Woock JP, Grill WM. Bladder activation by selective stimulation of pudendal nerve afferents in cats. Exp Neurol. 2008;212(1):218–25.CrossRefGoogle Scholar
  26. 26.
    Zempleni MZ, Michels L, Mehnert U, et al. Cortical substrate of bladder control in SCI and the effect of peripheral pudendal stimulation. NeuroImage. 2010;49(4):2983–94.CrossRefGoogle Scholar
  27. 27.
    Huang JC, Deletes V, Vodusek DB, et al. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41(2):411–5.CrossRefGoogle Scholar
  28. 28.
    Reitz A, Schmid DM, Curt A, et al. Afferent fibers of the pudendal nerve modulate sympathetic neurons controlling the bladder neck. Neurourol Urodyn. 2003;22(6):597–601.CrossRefGoogle Scholar
  29. 29.
    Schmidt RA. Technique of pudendal nerve localization for block or stimulation. J Urol. 1989;142:1528–31.CrossRefGoogle Scholar
  30. 30.
    Spinelli M, Malaguti S, Giardiello G, et al. A new minimally invasive procedure for pudendal nerve stimulation to treat neurogenic bladder: description of the method and preliminary data. Neurourol Urodyn. 2005;24:305–9.CrossRefGoogle Scholar
  31. 31.
    Bock S, Folie P, Wolff K, et al. First experiences with pudendal nerve stimulation in fecal incontinence: a technical report. Tech Coloproctol. 2010;14:41–4.CrossRefGoogle Scholar
  32. 32.
    Vodusek DB, Plevnik S, Vrtacnik P, et al. Detrusor inhibition on selective pudendal nerve stimulation in the perineum. Neurourol Urodyn. 1988;6:389–93.CrossRefGoogle Scholar
  33. 33.
    Heinze K, Hoermann R, Fritsch H, et al. Comparative pilot study of implantation techniques for pudendal neuromodulation: technical and clinical outcome in first 20 patients with chronic pelvic pain. World J Urol. 2015;33:289–94.CrossRefGoogle Scholar
  34. 34.
    Martens FMJ, Heesakkers JPFA, Rijkhoff NJM. Surgical access for electrical stimulation of the pudendal and dorsal genital nerves in the overactive bladder: a review. J Urol. 2011;186:798–804.CrossRefGoogle Scholar
  35. 35.
    Possover M. A novel implantation technique for pudendal nerve stimulation for treatment of overactive bladder and urgency incontinence. J Minim Invasive Gynecol. 2014;21:888–92.CrossRefGoogle Scholar
  36. 36.
    Konschake M, Brenner E, Moriggl B, et al. New laparoscopic approach to the pudendal nerve for neuromodulation based on an anatomic study. Neurourol Urodyn. 2017;36:1069–75.CrossRefGoogle Scholar
  37. 37.
    Peters KM, Killinger KA, et al. Chronic pudendal neuromodulation: expanding available treatment options for refractory urologic symptoms. Neurourol Urodyn. 2010;29(7):1267–71.CrossRefGoogle Scholar
  38. 38.
    Peters KM, Feber KM, Bennett RC. Sacral versus pudendal nerve stimulation for voiding dysfunction: a prospective, single-blinded, randomized, crossover trial. Neurourol Urodyn. 2005;24:643–7.CrossRefGoogle Scholar
  39. 39.
    Groen J, Amiel C, Bosch JC. Chronic pudendal nerve neuromodulation in women with idiopathic refractory detrusor overactivity incontinence: results of a pilot study with a novel minimally invasive implantable mini stimulator. Neurourol Urodyn. 2005;24:226–30.CrossRefGoogle Scholar
  40. 40.
    Wang S, Zhang S, Zhao L. Long-term efficacy of electrical pudendal nerve stimulation for urgency-frequency syndrome in women. Int Urogynecol J. 2014;25:397–402.CrossRefGoogle Scholar
  41. 41.
    Wang S, Lv J, Feng X, et al. Efficacy of electrical pudendal nerve stimulation versus transvaginal electrical stimulation in treating female idiopathic urgency urinary incontinence. J Urol. 2017;197:1496–501.CrossRefGoogle Scholar
  42. 42.
    Siegel S, Noblett K, et al. Three-year follow-up results of a prostpective, multicenter study in overactive bladder subjects treated with sacral neuromodulation. Urology. 2016;94:57–63.CrossRefGoogle Scholar
  43. 43.
    Bartley J, Gilleran J, Peters K. Neuromodulation for overactive bladder. Nat Rev Urol. 2013;10:513–21.CrossRefGoogle Scholar
  44. 44.
    Labat JJ, Riant T, et al. Diagnostic criteria for pudendal neuralgia by pudendal nerve entrapment (Nantes criteria). Neurourol Urodyn. 2008;27(4):306–10.CrossRefGoogle Scholar
  45. 45.
    Peters KM, Killinger KA, Jaeger C, et al. Pilot study exploring chronic pudendal neuromodulation as a treatment option for pain associated with pudendal neuralgia. LUTS. 2015;7:138–42.PubMedGoogle Scholar
  46. 46.
    Carmel M, Lebel M, Tu LM. Pudendal nerve neuromodulation with neurophysiology guidance: a potential treatment option for refractory chronic pelvi-perineal pain. Int Urogynecol J. 2010;21:613–6.CrossRefGoogle Scholar
  47. 47.
    van Meegdenburg MM, Heineman E, Broens PMA. Pudendal neuropathy alone results in urge incontinence and not total fecal incontinence. Dis Colon Rectum. 2015;58:1186–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyOakland University William Beaumont School of MedicineRoyal OakUSA
  2. 2.Urology San AntonioSan AntonioUSA

Personalised recommendations