Advertisement

Basic Neuroanatomy and Neurophysiology of the Lower Urinary Tract

  • Lauren Tennyson
  • Christopher J. Chermansky
Chapter

Abstract

The lower urinary tract (LUT) serves to store and periodically eliminate urine through complex mechanisms coordinated by local, spinal, and brain circuits. These neural circuits coordinate the activities of the bladder and urethra, alternating between two primary modes of operation: urine storage and urine elimination. This chapter will review normal autonomic and somatic neural connections within the LUT. Discrete neurologic lesions typically result in predictable patterns of LUT dysfunction, and the pathophysiology of the neurologic disorders commonly affecting LUT function will also be described in this chapter. Lastly, we will review the landmark basic science studies and relevant animal models that have expanded our understanding of neuromodulation techniques on the LUT over the past decade.

Keywords

Lower urinary tract (LUT) Neurogenic dysfunction Neuromodulation Sacral neuromodulation (SNM) Percutaneous tibial nerve stimulation (PTNS) Pudendal nerve stimulation (PNS) 

References

  1. 1.
    de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5(1):327–96.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wein AJ, Dmochowski RR. Neuromuscular dysfunction of the lower urinary tract. In: Wein AJ, editor. Campbell-Walsh urology. Philadelphia: Elsevier; 2016. p. 1761–95.Google Scholar
  3. 3.
    Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66.CrossRefGoogle Scholar
  4. 4.
    Chai TC, Birder LA. Physiology and pharmacology of the bladder and urethra. In: Wein AJ, editor. Campbell-Walsh urology. Philadelphia: Elsevier; 2016. p. 1631–84.Google Scholar
  5. 5.
    de Groat WC, Wickens C. Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol. 2013;207(1):66–84.CrossRefGoogle Scholar
  6. 6.
    de Groat WC, Booth AM. Synaptic transmission in pelvic ganglia. In: Maggi CA, editor. The autonomic nervous system. London: Harwood Academic; 1993. p. 291–347.Google Scholar
  7. 7.
    Thor KB, Morgan C, Nadelhaft I, Houston M, De Groat WC. Organization of afferent and efferent pathways in the pudendal nerve of the female cat. J Comp Neurol. 1989;288(2):263–79.CrossRefGoogle Scholar
  8. 8.
    Yoshimura N, Chancellor MB. Neurophysiology of lower urinary tract function and dysfunction. Rev Urol. 2003;5(8):S3–S10.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Physiol Regul Integr Comp Physiol. 2010;299:R416–38.CrossRefGoogle Scholar
  10. 10.
    de Groat WC, Yoshimura N. Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol. 2009;194:91–138.CrossRefGoogle Scholar
  11. 11.
    Sengupta JN, Gebhart GF. Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1994;72:2420–30.CrossRefGoogle Scholar
  12. 12.
    Wakabayashi Y, Tomoyoshi T, Fujimiya M, et al. Substance P-containing axon terminals in the mucosa of the human urinary bladder: pre-embedding immunohistochemistry using cryostat sections for electron microscopy. Histochemistry. 1993;100:401.CrossRefGoogle Scholar
  13. 13.
    Steers WD, Ciambotti J, Etzel B, Erdman S, de Groat WC. Alterations in afferent pathways from the urinary bladder of the rat in response to partial urethral obstruction. J Comp Neurol. 1991;310:401–10.CrossRefGoogle Scholar
  14. 14.
    Griffiths DJ. Cerebral control of bladder function. Curr Urol Rep. 2004;5:348–35.CrossRefGoogle Scholar
  15. 15.
    Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol. 2013;207(1):93–109.CrossRefGoogle Scholar
  16. 16.
    Sugaya K, Matsuyama K, Takakusaki K, Mori S. Electrical and chemical stimulations of the pontine micturition center. Neurosci Lett. 1987;80(2):197–201.CrossRefGoogle Scholar
  17. 17.
    Takasaki A, Hui M, Sasaki M. Is the periaqueductal gray an essential relay center for the micturition reflex pathway in the cat? Brain Res. 2011;1317:108–15.CrossRefGoogle Scholar
  18. 18.
    Stone E, Coote JH, Allard J, Lovick TA. GABAergic control of micturition within the periaqueductal grey matter of the male rat. J Physiol. 2011;589:2065–78.CrossRefGoogle Scholar
  19. 19.
    de Groat WC, Nadelhaft I, Milne RJ, Booth AM, Morgan C, Thor K. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst. 1981;3:135–60.CrossRefGoogle Scholar
  20. 20.
    de Groat WC, Ryall RW. Reflexes to sacral parasympathetic neurons concerned with micturition in the cat. J Physiol. 1969;200:87–108.CrossRefGoogle Scholar
  21. 21.
    Häbler HJ, Jänig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.CrossRefGoogle Scholar
  22. 22.
    Mallory B, Steers WD, de Groat WC. Electrophysiological study of micturition reflexes in rats. Am J Phys. 1989;257:R410–21.Google Scholar
  23. 23.
    Bruns TM, Gaunt RA, Weber DJ. Multielectrode array recordings of bladder and perineal primary afferent activity from the sacral dorsal root ganglia. J Neural Eng. 2011;8:056010.CrossRefGoogle Scholar
  24. 24.
    Jänig W, Morrison JFB. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res. 1986;67:87–114.CrossRefGoogle Scholar
  25. 25.
    McMahon SB, Abel C. A model for the study of visceral pain states: chronic inflammation of the chronic decerebrate rat urinary bladder by irritant chemicals. Pain. 1987;28:109–27.CrossRefGoogle Scholar
  26. 26.
    Fall M, Lindström S, Mazieres L. A bladder-to-bladder cooling reflex in the cat. J Physiol. 1990;427:281–300.CrossRefGoogle Scholar
  27. 27.
    de Groat WC, Booth AM, Yoshimura N. Neurophysiology of micturition and its modification in animal models of human disease. In: Maggi CA, editor. The autonomic nervous system, nervous control of the urogenital system, vol. 3. London: Harwood Academic; 1993. p. 227–89.Google Scholar
  28. 28.
    de Groat WC. Mechanism underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia. 1995;33:493–505.PubMedGoogle Scholar
  29. 29.
    de Groat WC, Kawatani M, Hisamitsu T, et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J Auton Nerv Syst. 1990;30(Suppl):s71–7.CrossRefGoogle Scholar
  30. 30.
    de Groat WC, Yoshimura N. Plasticity in reflex pathways to the lower urinary tract following spinal cord injury. Exp Neurol. 2012;225:123–32.CrossRefGoogle Scholar
  31. 31.
    de Groat WC, Yoshimura N. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Prog Brain Res. 2006;152:59–84.CrossRefGoogle Scholar
  32. 32.
    Khan Z, Starer P, Yang WC, et al. Analysis of voiding disorders in patients with cerebrovascular accidents. Urology. 1990;35:265–70.CrossRefGoogle Scholar
  33. 33.
    Fowler CJ. Neurological disorders of micturition and their treatment. Brain. 1999;122:1213–31.CrossRefGoogle Scholar
  34. 34.
    Kim TG, Chun MH, Chang MC, et al. Outcomes of drug-resistant urinary retention in patients in the early stage of stroke. Ann Rehabil Med. 2015;39:262–7.CrossRefGoogle Scholar
  35. 35.
    Kong KH, Young S. Incidence and outcome of post-stroke urinary retention: a prospective study. Arch Phys Med Rehabil. 2000;81:1464–7.CrossRefGoogle Scholar
  36. 36.
    Griffiths D. Clinical studies of cerebral and urinary tract function in elderly people with urinary incontinence. Behav Brain Res. 1998;92:151–5.CrossRefGoogle Scholar
  37. 37.
    Yeo L, Singh R, Gundeti M, et al. Urinary tract dysfunction in Parkinson's disease: a review. Int Urol Nephrol. 2012;44(2):415–24.CrossRefGoogle Scholar
  38. 38.
    Araki I, Kuno S. Assessment of voiding dysfunction in Parkinson’s disease by the international prostate symptom score. J Neurol Neurosurg Psychiatry. 2000;68(4):429–33.CrossRefGoogle Scholar
  39. 39.
    Lemack GE, Dewey RB, Roehrborn CG, et al. Questionnaire-based assessment of bladder dysfunction in patients with mild to moderate Parkinson’s disease. Urology. 2000;56:250–4.CrossRefGoogle Scholar
  40. 40.
    Campos-Sousa RN, Quagliato E, da Silva BB, et al. Urinary symptoms in Parkinson’s disease: prevalence and associated factors. Arq Neuropsiquiatr. 2003;61(2B):359–63.CrossRefGoogle Scholar
  41. 41.
    Sakakibara R, Fowler CJ, Hattori T. Voiding and MRI analysis of the brain. Int Urogynecol J Pelvic Floor Dysfunct. 1999;10:192–9.CrossRefGoogle Scholar
  42. 42.
    Blaivas JG, Kaplan SA. Urologic dysfunction in patients with multiple sclerosis. Semin Neurol. 1988;8:159–65.CrossRefGoogle Scholar
  43. 43.
    Litwiller SE, Frohman EM, Zimmern PE. Multiple sclerosis and the urologist. J Urol. 1999;161:743–57.CrossRefGoogle Scholar
  44. 44.
    Ukkonen M, Elovaara I, Dastidar P, et al. Urodynamic findings in primary progressive multiple sclerosis are associated with increased volumes of plaques and atrophy in the central nervous system. Acta Neurol Scand. 2004;109:100–5.CrossRefGoogle Scholar
  45. 45.
    Thomas DG, O'Flynn KJ. Spinal cord injury. In: Mundy AR, Stephenson T, Wein AJ, editors. Urodynamics: principles, practice and application. London: Churchill Livingstone; 1994. p. 345–58.Google Scholar
  46. 46.
    Fam B, Yalla SV. Vesicourethral dysfunction in spinal cord injury and its management. Semin Neurol. 1988;8:150–5.CrossRefGoogle Scholar
  47. 47.
    Ren J, Chew DJ, Biers S, et al. Electrical nerve stimulation to promote micturition in spinal cord injury patients: a review of current attempts. Neurourol Urodyn. 2016;35(3):365–70.CrossRefGoogle Scholar
  48. 48.
    Brindley GS. An implant to empty the bladder or close the urethra. J Neurol Neurosurg Psychiatry. 1977;40:358–69.CrossRefGoogle Scholar
  49. 49.
    Brindley GS, Polkey CE, Rushton DN. Sacral anterior root stimulators for bladder control in paraplegia. Paraplegia. 1982;20:365–81.PubMedGoogle Scholar
  50. 50.
    Sievert KD, Amend B, Gakis G, et al. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann Neurol. 2010;67:74–84.CrossRefGoogle Scholar
  51. 51.
    Yoshimura N, Smith CP, Chancellor MD, et al. Pharmacologic and potential biologic interventions to restore bladder function after spinal cord injury. Curr Opin Neurol. 2000;13:677–81.CrossRefGoogle Scholar
  52. 52.
    Kutzenberger J, Domurath B, Sauerwein D. Spastic bladder and spinal cord injury: seventeen years of experience with sacral deafferentation and implantation of an anterior root stiumlator. Artif Organs. 2005;29:239–41.CrossRefGoogle Scholar
  53. 53.
    de Groat WC, Tai C. Impact of bioelectronic medicine on the neural regulation of pelvic visceral function. Bioelectron Med. 2015;22:25–36.Google Scholar
  54. 54.
    Zhang F, Zhao S, Shen B, et al. Neural pathways involved in sacral neuromodulation of reflex bladder activity in cats. Am J Physiol Renal Physiol. 2013;304:F710–7.CrossRefGoogle Scholar
  55. 55.
    Larson JA, Ogagan PD, Chen G, et al. Involvement of metabotropic glutamate receptor 5 in pudendal inhibition of nociceptive bladder activity in cats. J Physiol. 2011;589:5833–43.CrossRefGoogle Scholar
  56. 56.
    Tai C, Chen M, Shen B, et al. Irritation induced bladder overactivity is suppressed by tibial nerve stimulation in cats. J Urol. 2011;186:326–30.CrossRefGoogle Scholar
  57. 57.
    Tai C, Shen B, Mally AD, et al. Inhibition of micturition reflex by activation of somatic afferents in posterior femoral cutaneous nerve. J Physiol. 2012;590:4945–55.CrossRefGoogle Scholar
  58. 58.
    Tai C, Shen B, Chen M, et al. Suppression of bladder overactivity by activation of somatic afferent nerves in the foot. BJU Int. 2011;107:303–9.CrossRefGoogle Scholar
  59. 59.
    Tai C, Larson JA, Ogagan PD, et al. Differential role of opioid receptors in tibial nerve inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am J Physiol Renal Physiol. 2012;302:F1090–7.CrossRefGoogle Scholar
  60. 60.
    Tai C, Shen B, Chen M, et al. Prolonged poststimulation inhibition of bladder activity induced by tibial nerve stimulation in cats. Am J Physiol Renal Physiol. 2011;300:F385–92.CrossRefGoogle Scholar
  61. 61.
    Rogers MJ, Xiao Z, Shen B, et al. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats. Am J Physiol Regul Integr Comp Physiol. 2015;308:R42–9.CrossRefGoogle Scholar
  62. 62.
    Tai C, Smerin SE, de Groat WC, et al. Pudendal-to-bladder reflex in chronic spinal-cord-injured cats. Exp Neuro. 2006;197:225–34.CrossRefGoogle Scholar
  63. 63.
    Woock JP, Yoo PB, Grill WM. Mechanisms of reflex bladder activation by pudendal afferents. Am J Physiol Regul Integr Comp Physiol. 2011;300:R398–407.CrossRefGoogle Scholar
  64. 64.
    Xiao Z, Reese J, Schwen Z, et al. Role of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am J Physiol Renal Physiol. 2014;306(7):F781–9.CrossRefGoogle Scholar
  65. 65.
    Mally AD, Matsuta Y, Zhang F, et al. Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J Urol. 2013;189:1574–9.CrossRefGoogle Scholar
  66. 66.
    Peters KM, Killinger KA, Boguslawski BM, et al. Chronic pudendal neuromodulation: expanding available treatment options for refractory urologic symptoms. Neurourol Urodyn. 2010;29:1267–71.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of UrologyUPMC Magee Womens HospitalPittsburghUSA

Personalised recommendations