Skip to main content

Tree-Shaped Flow Networks Fundamentals

  • Chapter
  • First Online:
Tree-Shaped Fluid Flow and Heat Transfer

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The size of the offspring vessels and airways in circulatory and respiratory trees can be predicted by theory. We first review the relationship connecting a parent tube to daughter tubes based on the application of optimization principles, such as minimizing energy expenditure, minimizing the total flow resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Maximum flow access” corresponds to minimum travel time or minimum transfer time (Bejan and Ledezma 1998). Thus, it is equivalent to state that “for a finite-size flow system to persist in time, it must evolve such that it provides a minimum travel time to currents that flow through it.”

  2. 2.

    Wechsatol et al. (2006) studied the effect of junction losses on the optimal connection of large vessels to small. They concluded that the junction losses have a sizeable effect on optimized geometry when a dimensionless parameter called svelteness, defined by the ratio between the external and internal length scales, is lower than the square root of 10.

References

  • Aragón AM, Wayer JK, Geubelle PH, Goldberg DE, White SR (2008) Design of microvascular flow networks using multi-objective genetic algorithms. Comput Methods Appl Mech Eng 197:4399–4410

    Article  Google Scholar 

  • Ashrafizaadeh M, Bakhshaei H (2009) A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput Math Appl 58:1045–1054

    Article  MathSciNet  Google Scholar 

  • Bejan A (1997) Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME: J Heat Transfer 40:799–816

    MATH  Google Scholar 

  • Bejan A (2000) Shape and structure, from engineering to Nature. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bejan A (2001) The tree of convective heat streams: its thermal insulation function and the predicted 3/4-power relation between body heat loss and body size. Int J Heat Mass Transfer 44:699–704

    Article  Google Scholar 

  • Bejan A (2005) The constructal law of organization in nature: tree-shaped flows and body size. J Exp Biol 208:1677–1686

    Article  Google Scholar 

  • Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Bejan A, Ledezma GA (1998) Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point. Phys A 255:211–217

    Article  Google Scholar 

  • Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken

    Book  Google Scholar 

  • Bejan A, Rocha LAO, Lorente S (2000) Thermodynamic optimization of geometry: T and Y-shaped constructs of fluid streams. Int J Therm Sci 39:949–960

    Article  Google Scholar 

  • Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technologies. Springer, New York

    Book  Google Scholar 

  • Bejan A, Lorente S, Miguel AF, Reis AH (2006a) Constructal theory of distribution of river sizes. In: Bejan A (ed) Advanced engineering thermodynamics, 3rd edn. Wiley, Hoboken, pp 779–782

    Google Scholar 

  • Bejan A, Lorente S, Wang K (2006b) Networks of channels for self-healing composite materials. J Appl Phys 100:033528

    Article  Google Scholar 

  • Bejan A, Lorente S, Lee J (2008) Unifying constructal theory of tree roots, canopies and forests. J Theor Biol 254:529–540

    Article  MathSciNet  Google Scholar 

  • Bejan A, Lorente S (2013) Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys 113:151301

    Article  Google Scholar 

  • Blaiszik BJ, Kramer SL, Olugebefola SC, Moore JS, Sottos RN, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  Google Scholar 

  • Broe R, Rasmussen ML, Frydkjaer-Olsen U, Olsen BS, Mortensen HB, Peto T, Grauslund J (2014) Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus: the danish cohort of pediatric diabetes 1987 (DCPD1987). Diabetologia 57:2215–2221

    Article  Google Scholar 

  • Burrowes KS, Hoffman EA, Tawhai MH (2009) Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion. Ann Biomed Eng 37:2497–2509

    Article  Google Scholar 

  • Cetkin E, Oliani A (2015) The natural emergence of asymmetric tree-shaped pathways for cooling of a non-uniformly heated domain. J Appl Phys 118:024902

    Article  Google Scholar 

  • Cetkin E, Lorente S, Bejan A (2011a) Vascularization for cooling and mechanical strength. Int J Heat Mass Transf 54:2774–2781

    Article  Google Scholar 

  • Cetkin E, Lorente S, Bejan A (2011b) Hybrid grid and tree structures for cooling and mechanical strength. J Appl Phys 110:064910

    Article  Google Scholar 

  • Cetkin E, Lorente S, Bejan A (2011c) Vascularization for cooling and mechanical strength. Int J Heat Mass Transf 54:2774–2781

    Article  Google Scholar 

  • Chen YP, Cheng P (2005) An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets. Int Commun Heat Mass Transfer 32:931–938

    Article  Google Scholar 

  • Cohn DL (1954) Optimal systems: I the vascular system. Bull Math Biophys 16:59–74

    Article  Google Scholar 

  • Cohn DL (1955) Optimal systems: II the vascular system. Bull Math Biophys 17:219–227

    Article  Google Scholar 

  • Hess WR (1903) Eine mechanisch bedingte Gesetzmäßigkeit im Bau des Blutgefäßsystems. Archiv für Entwicklungsmechanik der Organismen 16:632–641

    Article  Google Scholar 

  • Hess WR (1917) Über die periphere Regulierung der Blutzirkulation. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 168:439–490

    Article  Google Scholar 

  • Horsfield K (1986) Morphometry of airways. In: Macklem PT, Mead J (eds) Handbook of physiology: the respiratory system III. American Physiological Society, Bethesda, pp 75–87

    Google Scholar 

  • Horsfield K, Cumming G (1967) Angles of branching and diameters of branches in the human bronchial tree. Bull Math Biophys 29:245–259

    Article  Google Scholar 

  • Horsfield K, Cumming G (1968) Morphology of the bronchial tree in man. J Appl Physiol 24:373–383

    Article  Google Scholar 

  • Horton RE (1932) Drainage basin characteristics. Trans Am Gcophys Union 13:350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonar vasculature. J Appl Physiol 81:2123–2133

    Article  Google Scholar 

  • Hutchins GM, Miner MM, Boitnott JK (1976) Vessel caliber and branch-angle of human coronary artery branch-points. Circ Res 38:572–576

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  MathSciNet  Google Scholar 

  • Kamiya A, Togawa T (1972) Optimal branching structure of the vascular tree. Bull Math Biophys 34:431–438

    Article  Google Scholar 

  • Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J Physiol Heart Circ Physiol 265:H350–H365

    Article  Google Scholar 

  • Kim S, Lorente S, Bejan A (2006) Vascularized materials: tree-shaped flow architectures matched canopy to canopy. J Appl Phys 100:063525

    Article  Google Scholar 

  • Kitaoka H, Ryuji T, Suki B (1999) A three-dimensional model of the human airway tree. J Appl Physiol 87:2207–2217

    Article  Google Scholar 

  • Lee J, Lorente S, Bejan A (2009) Transient cooling response of smart vascular materials for self-cooling. J Appl Phys 105:064904

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of Nature. W.H. Freeman, New York

    Google Scholar 

  • Miao T, Chen A, Xu Y, Yang S, Yu B (2016) Optimal structure of damaged tree-like branching networks for the equivalent thermal conductivity. Int J Therm Sci 102:89–99

    Article  Google Scholar 

  • Miguel AF (2010) Natural flow systems: acquiring their constructal morphology. Int J Des Nat Ecodyn 5:230–241

    Article  Google Scholar 

  • Miguel AF (2012) Lungs as a natural porous media: architecture, airflow characteristics and transport of suspended particles. In: Delgado J (ed) Heat and mass transfer in porous media. Advanced Structured Materials Series, vol 13. Springer, Berlin, pp 115–137

    Google Scholar 

  • Miguel AF (2015) Fluid flow in a porous tree-shaped network: optimal design and extension of Hess–Murray’s law. Phys A 423:61–71

    Article  MathSciNet  Google Scholar 

  • Miguel AF (2016a) Toward an optimal design principle in symmetric and asymmetric tree flow networks. J Theor Biol 389:101–109

    Article  MathSciNet  Google Scholar 

  • Miguel AF (2016b) Scaling laws and thermodynamic analysis for vascular branching of microvessels. Int J Fluid Mech Res 43:390–403

    Article  Google Scholar 

  • Miguel AF (2016c) A study of entropy generation in tree-shaped flow structures. Int J Heat Mass Trans 92:349–359

    Article  Google Scholar 

  • Miguel AF (2017) Penetration of inhaled aerosols in the bronchial tree. Med Eng Phys 44:25–31

    Article  Google Scholar 

  • Miguel AF (2018) Constructal branching design for fluid flow and heat transfer. Int J Heat Mass Transf 122:204–211  

    Article  Google Scholar 

  • Moledina S, de Bruyn A, Schievano S, Owens CM, Young C, Haworth SG, Taylor AM, Schulze-Neick I, Muthurangu V (2011) Fractal branching quantifies vascular changes and predicts survival in pulmonary hypertension: a proof of principle study. Heart 97:1245–1249

    Article  Google Scholar 

  • Moreau B, Mauroy B (2015) Murray’s law revisited: Quémada’s fluid model and fractal tree. J Rheol 59:1419

    Article  Google Scholar 

  • Murray CD (1926a) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 12:207–214

    Article  Google Scholar 

  • Murray CD (1926b) The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol 9:835–841

    Article  Google Scholar 

  • Muzychka YS (2007) Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers. Int J Therm Sci 46:245–252

    Article  Google Scholar 

  • Pence DV (2003) Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys Eng 6:319–330

    Article  Google Scholar 

  • Phillips CG, Kaye SR (1997) On the asymmetry of bifurcations in the bronchial tree. Respir Physiol 107:85–98

    Article  Google Scholar 

  • Popel AS, Johnson PC (2005) Microcirculation and hemorheology. Annu Rev Fluid Mech. 37:43–69

    Article  MathSciNet  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Dtsch Arch Klin Med 169:212–222

    Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2003) Structural response of microcirculatory networks to changes in demand: information transfer by shear stress. Am J Physiol Heart Circ Physiol 284:H2204–H2212

    Article  Google Scholar 

  • Reis AH (2006) Constructal view of scaling laws of river basins. Geomorphology 78:201–206

    Article  Google Scholar 

  • Reis AH, Miguel AF, Aydin M (2004) Constructal theory of flow architecture of the lungs. Med Phys 31:1135–1140

    Article  Google Scholar 

  • Revellin R, Rousset F, Baud D, Bonjour J (2009) Extension of Murray’s law using a non-Newtonian model of blood flow. Theor Biol Med Model 6:7

    Article  Google Scholar 

  • Rocha LAO, Lorente S, Bejan A (2006) Conduction tree networks with loops for cooling a heat generating volume. Int J Heat Mass Transfer 49:2626–2635

    Article  Google Scholar 

  • Rocha LAO, Lorente S, Bejan A (2014) Vascular design for reducing hot spots and stresses. J Appl Phys 115:174904

    Article  Google Scholar 

  • Rodríguez-Iturbe I, Rinaldo A (2001) Fractal river basins: chance and self-organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Rojas AMT, Romero AM, Pagonabarraga I, Travasso RDM, Poire EC (2015) Obstructions in vascular networks. Critical vs non-critical topological sites for blood supply. PLoS ONE 10:e0128111

    Article  Google Scholar 

  • Schneider W (2003) Cardiovascular fluid mechanics, CISM Courses and Lectures Series, vol 446. Springer, Berlin

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  MathSciNet  Google Scholar 

  • Sherman TF (1981) On connecting large vessels to small, the meaning of Murray’s law. J Gen Physiol 78:431–453

    Article  Google Scholar 

  • Taber LA, Ng S, Quesnel AM, Whatman J, Carmen CJ (2001) Investigating Murray’s law in the chick embryo. J Biomech 34:121–124

    Article  Google Scholar 

  • Takayasu H (1990) Fractals in physical sciences. Manchester University Press, Manchester

    MATH  Google Scholar 

  • Thoma R (1901) Über den verzweigungsmodus der arterien. Archiv für Entwicklungsmechanik der Organismen 2:352–413

    Article  Google Scholar 

  • Toksvang LN, Berg RM (2013) Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology. Adv Physiol Educ 37:129–133

    Article  Google Scholar 

  • Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    Article  Google Scholar 

  • Uylings HBM (1977) Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol 39:509–519

    Article  Google Scholar 

  • Wagner A (2007) From bit to it: how a complex metabolic network transforms information into living matter. BMC Syst Biol 1:33

    Article  Google Scholar 

  • Wechsatol W, Lorente S, Bejan A (2002) Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transf 45:4911–4924

    Article  Google Scholar 

  • Wechsatol W, Lorente S, Bejan A (2005) Tree-shaped networks with loops. Int J Heat Mass Transfer 48:573–583

    Article  Google Scholar 

  • Wechsatol W, Lorente S, Bejan A (2006) Tree-shaped flow structures with local junction losses. Int J Heat Mass Trans 49:2957–2964

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  Google Scholar 

  • Williams HR, Trask RS, Weaver PM, Bond IP (2008) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5:55–65

    Article  Google Scholar 

  • Xu P, Yu B, Yun M, Zou M (2006) Heat conduction in fractal tree-like branched networks. Int J Heat Mass Trans 49:3746–3751

    Article  Google Scholar 

  • Xu P, Wang XQ, Mujumdar AS, Yap C, Yu BM (2009) Thermal characteristics of tree-shaped microchannel nets with/without loops. Int J Therm Sci 48:2139–2147

    Article  Google Scholar 

  • Xu P, Sasmito AP, Yu B, Mujumdar AS (2016) Transport phenomena and properties in treelike networks. Appl Mech Rev 68: 040802-1–040802-17

    Article  Google Scholar 

  • Young T (1809) On the functions of the heart and arteries. Philos Trans R Soc Lond 99:1–31

    Article  Google Scholar 

  • Zamir M (1975) The role of shear forces in arterial branching. J Gen Physiol 67:213–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miguel, A.F., Rocha, L.A.O. (2018). Tree-Shaped Flow Networks Fundamentals. In: Tree-Shaped Fluid Flow and Heat Transfer. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73260-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73260-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73259-6

  • Online ISBN: 978-3-319-73260-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics