Allan J (1987) Macroinvertebrate drift in a Rocky Mountain stream. Hydrobiologia 144:261–268
CrossRef
Google Scholar
Arscott DB, Tockner K, Ward JV (2005) Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river. J North Am Benthol Soc 24:934–954. https://doi.org/10.1899/05-037.1
CrossRef
Google Scholar
Auer S, Fohler N, Zeiringer B, Führer S, Schmutz S (2014) Experimentelle Untersuchungen zur Schwallproblematik – Drift und Stranden von Äschen und Bachforellen während der ersten Lebensstadien. Forschungsbericht
Google Scholar
Auer S, Zeiringer B, Führer S, Tonolla D, Schmutz S (2017) Effects of river bank heterogeneity and time of day on drift and stranding of juvenile European grayling (Thymallus thymallus L.) caused by hydropeaking. Sci Total Environ 575:1515–1521. https://doi.org/10.1016/j.scitotenv.2016.10.029
CAS
CrossRef
PubMed
Google Scholar
Bauersfeld K (1978) Stranding of juvenile salmon by flow reductions at Mayfield Dam on the Cowlitz River, 1976 Technical Report 36. Department of Fisheries, Washington
Google Scholar
Bell E, Kramer S, Zajanc D, Aspittle J (2008) Salmonid fry stranding mortality associated with daily water level fluctuations in Trail Bridge Reservoir. Oregon North Am J Fish Manage 28(5):1515–1528. https://doi.org/10.1577/m07-026.1
CrossRef
Google Scholar
Berland G, Nickelsen T, Heggenes J, Økland F, Thorstad EB, Halleraker J (2004) Movements of wild Atlantic salmon parr in relation to peaking flows below a hydropower station. River Res Appl 20(8):957–966. https://doi.org/10.1002/rra.80
CrossRef
Google Scholar
Biggs BJ, Close ME (1989) Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshw Biol 22(2):209–231
CAS
CrossRef
Google Scholar
Biggs BJ, Thomsen HA (1995) Disturbance of stream periphyton by shear stress: time to structural failure and differences in community resistance. J Phycol 31(2):233–241
CrossRef
Google Scholar
Biggs BJ, Goring DG, Nikora VI (1998) Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J Phycol 34(4):598–607
CrossRef
Google Scholar
Blinn W, Shannon JP, Stevens LE, Carder JP (1995) Consequences of fluctuating discharge for lotic communities. J North Am Benthol Soc 14:233–248. https://doi.org/10.2307/1467776
CrossRef
Google Scholar
BMLFUW – Nationaler Gewässerbewirtschaftungsplan (2009/2010) http://www.lebensministerium.at/wasser/wasser-oesterreich/plan_gewaesser_ngp/nationaler_gewaesserbewirtschaftungsplan-nlp/ngp.html. 13 February 2014
Bondar-Kunze E, Maier S, Schönauer D, Bahl N, Hein T (2016) Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment. Sci Total Environ 573:594–602
CAS
CrossRef
Google Scholar
Bradford MJ (1997) An experimental study of stranding of juvenile salmonids on gravel bars and in sidechannels during rapid flow decreases. River Res Appl 13:395–401. https://doi.org/10.1002/(sici)1099-1646(199709/10)13:5<395::aid-rrr464>3.0.co;2-l
CrossRef
Google Scholar
Bradford MJ, Taylor GC, Allan JA, Higgins PS (1995) An experimental study of the stranding of juvenile Coho Salmon and Rainbow Trout during rapid flow decreases under winter conditions. North Am J Fish Manage 15(2):473–479
CrossRef
Google Scholar
Bretschko G, Moog O (1990) Downstream effects of intermittent power generation. Water Sci Technol 22:127–135
Google Scholar
Bruder A, Tonolla D, Schweizer S, Vollenweider S, Langhans SD, Wüest A (2016) A conceptual framework for hydropeaking mitigation. Sci Total Environ 568:1204–1212. https://doi.org/10.1016/j.scitotenv.2016.05.032
CAS
CrossRef
PubMed
Google Scholar
Bruno MC, Siviglia A, Carolli M, Maiolini B (2013) Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrology 6:511–522. https://doi.org/10.1002/eco.1275
CrossRef
Google Scholar
Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30(4):492–507. https://doi.org/10.1007/s00267-002-2737-0
CrossRef
Google Scholar
Burkholder JM (1996) Interactions of Benthic Algae with their Substrata-9. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology – freshwater benthic ecosystems. Academic, San Diego, pp 253–297
Google Scholar
Carolli M, Bruno MC, Siviglia A, Maiolini B (2012) Responses of benthic invertebrates to abrupt changes of temperature in flume simulations. River Res Appl 28:678–691. https://doi.org/10.1002/rra
CrossRef
Google Scholar
Céréghino R, Lavandier P (1998) Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshw Biol 40:385–399
CrossRef
Google Scholar
Céréghino R, Cugny P, Lavandier P (2002) Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int Rev Hydrobiol 87:47–60
CrossRef
Google Scholar
Comiti F (2012) How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surf Process Landf 37:693–707. https://doi.org/10.1002/esp.2267
CrossRef
Google Scholar
Cushman RM (1985) Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North Am J Fish Manag 5:330–339. https://doi.org/10.1577/1548-8659(1985)5<330:ROEEOR>2.0.CO;2
CrossRef
Google Scholar
Elliott JM (1967) Invertebrate drift in a Dartmoor stream. Arch Hydrobiol 63:202–237
Google Scholar
Elliott JM (2005) Contrasting diel activity and feeding patterns of four instars of Rhyacophila dorsalis (Trichoptera). Freshw Biol 50:1022–1033. https://doi.org/10.1111/j.1365-2427.2005.01388.x
CrossRef
Google Scholar
Finch C, Pine WE, Limburg KE (2015) Do hydropeaking flows alter juvenile fish growth rates? A test with juvenile humpback chub in the colorado river. River Res Appl 31:156–164. https://doi.org/10.1002/rra.2725
CrossRef
Google Scholar
Fjellheim A (1980) Differences in drifting of larval stages of Rhyacophila nubila (Trichoptera). Holarct Ecol 3:99–103. https://doi.org/10.1111/j.1600-0587.1980.tb00714.x
CrossRef
Google Scholar
Flodmark LEW, VØllestad LA, Forseth T (2004) Performance of juvenile brown trout exposed to fluctuating water level and temperature. J Fish Biol 65:460–470. https://doi.org/10.1111/j.1095-8649.2004.00463.x
CrossRef
Google Scholar
Friedl J, Naesby K (2014) Habitateignung der HyTEC-Versuchsanlage sowie Einfluss von Schwall auf Wachstums- und Konditionsentwicklung von Jungäschen (Thymallus thymallus). Master Thesis. Institut für Hydrobiologie, Gewässermanagement (IHG), BOKU-Universität für Bodenkultur, p 142
Google Scholar
Graf W, Leitner P, Moog O, Steidl C, Salcher G, Ochsenhofer G, Müllner K (2013) Schwallproblematik an Österreichs Fließgewässern – Ökologische Folgen und Sanierungsmöglichkeiten. Dateneerhebung und Analyse Benthische Invertebrtaten [WWW Document]. http://hydropeaking.boku.ac.at/
Greimel F, Zeiringer B, Höller N, Grün B, Godina R, Schmutz S (2015) A method to detect and characterize sub-daily flow fluctuations. Hydrol Process 30:2063–2078. https://doi.org/10.1002/hyp.10773
CrossRef
Google Scholar
Greimel F, Zeiringer B, Führer S, Holzapfel P, Fuhrmann M, Höller N, Hauer C, Schmutz S (2017) Longitudinal assessment of hydropeaking intensity and frequency based on multiple hydrograph curves – a method proposal (in prep)
Google Scholar
Hall RO, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall EJ, Voichick N, Behn KE (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–526. https://doi.org/10.1002/lno.10031
CrossRef
Google Scholar
Halleraker H, Saltveit SJ, Harby A, Arnekleiv JV, Fjeldstad H-P, Kohler B (2003) Factors influencing stranding of wild juvenile brown trout (Salmo trutta) during rapid and frequent flow decreases in an artificial stream. River Res Appl 19(5–6):589–603. https://doi.org/10.1002/rra.752
CrossRef
Google Scholar
Hauer C, Schober B, Habersack H (2013) Impact analysis of river morphology and roughness variability on hydropeaking based on numerical modelling. Hydrol Process 27(15):2209–2224
CrossRef
Google Scholar
Hauer C, Unfer G, Holzapfel P, Haimann M, Habersack H (2014) Impact of channel bar form and grain size variability on estimated stranding risk of juvenile brown trout during hydropeaking. Earth Surf Process Landf 39(12):1622–1641
Google Scholar
Heggenes J, Traaen T (1988) Downstream migration and critical water velocities in stream channels for fry of four salmonid species. J Fish Biol 32(5):717–727. https://doi.org/10.1111/j.1095-8649.1988.tb05412.x
CrossRef
Google Scholar
Hoagland KD, Roemer SC, Rosowski JR (1982) Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69:188–213
CrossRef
Google Scholar
Hondzo M, Wang H (2002) Effects of turbulence on growth and metabolism of periphyton in a laboratory flume. Water Resour Res 38(12):1277
CrossRef
Google Scholar
Hunter MA (1992) Hydropower flow fluctuations and salmonids: a review of the biological effects, mechanical causes, and options for mitigation. Technical Report No. 119. Department of Fisheries, State of Washington
Google Scholar
Illies J (1978) Limnofauna Europeae.- 2. überarbeitete und ergänzte Auflage. G. Fischer Verlag, Stuttgart, New York; Swets & Zeitlinger B.V., Amsterdam
Google Scholar
Imbert J, Perry J (2000) Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436:191–208
CrossRef
Google Scholar
Kaiser L (2016) Zum Einfluss unterschiedlich temperierter Schwallereignisse auf die Drift und Strandung von Jungäschen – demonstriert an der Versuchsanlage HyTEC Lunz am See. Masterarbeit – Institut für Hydrobiologie, Gewässermanagement (IHG), BOKU-Universität für Bodenkultur, p 92
Google Scholar
Kasper V (2016) The effect of thermopeaking on structural and functional characteristics of a microphytobenthos community. Masterarbeit – Institut für Hydrobiologie, Gewässermanagement (IHG), BOKU-Universität für Bodenkultur
Google Scholar
Kennedy TL, Turner TF (2011) River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere 2:art35. https://doi.org/10.1890/ES11-00047.1
CrossRef
Google Scholar
Kennedy TA, Yackulic CB, Cross WF, Grams PE, Yard MD, Copp AJ (2014) The relation between invertebrate drift and two primary controls, discharge and benthic densities, in a large regulated river. Freshw Biol 59:557–572. https://doi.org/10.1111/fwb.12285
CrossRef
Google Scholar
Lauters F, Lavandier P, Lim P, Sabaton C, Belaud A (1996) Influence of hydropeaking on invertebrates and their relationship with fish feeding habits in a Pyrenean river. Regul Rivers Res Manag 12:563–573. https://doi.org/10.1002/(SICI)1099-1646(199611)12:6<563::AID-RRR380>3.0.CO;2-M
CrossRef
Google Scholar
Limnex (2004) Auswirkungen des Schwallbetriebes auf das Ökosystem der Fliessgewässer: Grundlagen zur Beurteilung. Bericht im Auftrag des WWF, Zürich
Google Scholar
Maiolini B, Silveri L, Lencioni V (2007) Hydroelectric power generation and disruption of the natural stream flow: effects on the zoobenthic community. Stud Trent Sci Nat, Acta Biol 83:21–26
Google Scholar
Marty J, Smokorowski K, Power M (2009) The influence of fluctuating ramping rates on the food web of boreal rivers. River Res Appl 25:962–974. https://doi.org/10.1002/rra.1194
CrossRef
Google Scholar
Moore KMS, Gregory SV (1988) Summer habitat utilization and ecology of cutthroat trout fry (Salmo clarki) in Cascade Mountain Streams. Can J Fish Aquat Sci 45:1921–1930
CrossRef
Google Scholar
Muhar S, Schwarz M, Schmutz S, Jungwirth M (2000) Identification of rivers with high and good habitat quality: methodological approach and applications in Austria. Hydrobiologia 422:343–358. https://doi.org/10.1023/A:1017005914029
CrossRef
Google Scholar
Nagrodski A, Raby GD, Hasler CT, Taylor MK, Cooke SJ (2012) Fish stranding in freshwater systems: sources, consequences, and mitigation. J Environ Manag 103:133–141. https://doi.org/10.1016/j.jenvman.2012.03.007
CrossRef
Google Scholar
Oldmeadow DF, Lancaster J, Rice SP (2010) Drift and settlement of stream insects in a complex hydraulic environment. Freshw Biol 55:1020–1035. https://doi.org/10.1111/j.1365-2427.2009.02338.x
CrossRef
Google Scholar
Parasiewicz P, Schmutz S, Moog O (1998) The effect of managed hydropower peaking on the physical habitat, benthos and fish fauna in the River Bregenzerach in Austria. Fish Manag Ecol 5:403–417. https://doi.org/10.1046/j.1365-2400.1998.550403.x
CrossRef
Google Scholar
Passy SI, Larson CA (2011) Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microb Ecol 62(2):414–424
CAS
CrossRef
Google Scholar
Poff NL, DeCino RD, Ward JV (1991) Size-dependent drift responses of mayflies to experimental hydrologic variation: active predator avoidance or passive hydrodynamic displacement? Oecologia 88:577–586. https://doi.org/10.1007/BF00317723
CrossRef
PubMed
Google Scholar
Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784
CrossRef
Google Scholar
Puffer M, Berg OK, Huusko A, Vehanen T, Forseth T, Einum S (2015) Seasonal effects of Hydropeaking on growth, energetics and movement of juvenile Atlantic Salmon (Salmo Salar). River Res Appl 31:1101–1108. https://doi.org/10.1002/rra.2801
CrossRef
Google Scholar
Saltveit SJ, Halleraker JH, Arnekleiv JV, Harby A (2001) Field experiments on stranding in juvenile Atlantic Salmon (Salmo salar) and Brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. River Res Appl 17(4–5):609–622. https://doi.org/10.1002/rrr.652.abs
CrossRef
Google Scholar
Schmutz S, Fohler N, Friedrich T, Fuhrmann M, Graf W, Greimel F, Höller N, Jungwirth M, Leitner P, Moog O, Melcher A, Müllner K, Ochsenhofer G, Salcher G, Steidl C, Unfer G, Zeiringer B (2013) Schwallproblematik an Österreichs Fließgewässern – Ökologische Folgen und Sanierungsmöglichkeiten. BMFLUW, Wien
Google Scholar
Schmutz S, Bakken TH, Friedrich T, Greimel F, Harby A, Jungwirth M, Melcher A, Unfer G, Zeiringer B (2015) Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River Res Appl 31:919–930. https://doi.org/10.1002/rra.2795
CrossRef
Google Scholar
Schülting L, Feld CK, Graf W (2016) Effects of hydro- and thermopeaking on benthic macroinvertebrate drift. Sci Total Environ 573:1472–1480. https://doi.org/10.1016/j.scitotenv.2016.08.022
CAS
CrossRef
PubMed
Google Scholar
Smokorowski BKE (2010) Effects of experimental ramping rate on the invertebrate Community of a Regulated River Benthic Invertebrates as test organisms. Proceedings of the Colorado River Basin Science and Resource Management Symposium: 149–156
Google Scholar
Smolar-Žvanut N, Klemenčič AK (2013) The impact of altered flow regime on periphyton. In: Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, Chichester, pp 229–243
CrossRef
Google Scholar
Statzner B, Holm TF (1982) Morphological adaptations of benthic invertebrates to stream flow – an old question studied by means of a new technique (Laser Doppler Anemometry). Oecologia 53:290–292. https://doi.org/10.1007/BF00389001
CrossRef
PubMed
Google Scholar
Thompson LC, Cocherell SA, Chun SN, Cech JJJ, Klimley AP (2011) Longitudinal movement of fish in response to a single-day flow pulse. Environ Biol Fish 90:253–261. https://doi.org/10.1007/s10641-010-9738-2
CrossRef
Google Scholar
Toffolon M, Siviglia A, Zolezzi G (2010) Thermal wave dynamics in rivers affected by hydropeaking. Water Resour Res 46:W08536. https://doi.org/10.1029/2009WR008234
CrossRef
Google Scholar
Tonolla D, Bruder A, Schweizer S (2017) Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems – a case study from the Swiss alps. Sci Total Environ 574:594–604. https://doi.org/10.1016/j.scitotenv.2016.09.101
CAS
CrossRef
PubMed
Google Scholar
Townsend CR, Scarsbrook MR, Dolédec S (1997) The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol Oceanogr 42(5):938–949
CrossRef
Google Scholar
Tuor KMF, Smokorowski KE, Cooke SJ (2014) The influence of fluctuating ramping rates on the diets of small-bodied fish species of boreal rivers. Environ Biol Fish 98:345–355. https://doi.org/10.1007/s10641-014-0264-5
CrossRef
Google Scholar
Unfer G, Hauer C, Lautsch E (2011) The influence of hydrology on the recruitment of brown trout in an Alpine river, the Ybbs River, Austria. Ecol Freshw Fish 20:438–448. https://doi.org/10.1111/j.1600-0633.2010.00456.x
CrossRef
Google Scholar
Vanzo D, Zolezzi G, Siviglia A (2015) Eco-hydraulic modelling of the interactions between hydropeaking and river morphology. Ecohydrology 9(3):421–437. https://doi.org/10.1002/eco.1647
CrossRef
Google Scholar
Wagenhoff A, Lange K, Townsend CR, Matthaei CD (2013) Patterns of benthic algae and cyanobacteria along twin-stressor gradients of nutrients and fine sediment: a stream mesocosm experiment. Freshw Biol 58(9):1849–1863
CrossRef
Google Scholar
Ward JV, Stanford JA (1979) Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. In: Ward JV, Stanford JA (eds) The ecology of regulated streams. Plenum Press, New York, pp 35–55
CrossRef
Google Scholar
Waringer JA (1989) Resistance of cased caddis larva to accidental entry into the drift: the contribution of active and passive elements. Freshw Biol 21:411–420
CrossRef
Google Scholar
Yamada H, Nakamura F (2002) Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, Northern Japan. River Res Appl 18:481–493
CrossRef
Google Scholar
Young PS, Cech JJ, Thompson LC (2011) Hydropower-related pulsed flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Rev Fish Biol Fish 21:713–731. https://doi.org/10.1007/s11160-011-9211-0
CrossRef
Google Scholar
Zolezzi G, Siviglia A, Toffolon M, Maiolini B (2011) Thermopeaking in Alpine streams: event characterization and time scales. Ecohydrology 4:564–576
CrossRef
Google Scholar