Skip to main content

Grouping People in Cities: From Space-Time to Place-Time Based Profiling

  • Chapter
  • First Online:

Part of the book series: Human Dynamics in Smart Cities ((HDSC))

Abstract

With the widespread use of new geospatial technologies, huge amounts of human dynamics data have been collected. Space-time activity patterns drawn from these detailed mobility datasets reflect personal interests of individuals. Applying data mining methods to analyse these space time patterns has the potential to help us identify who specific people are. Here we expand the concept ‘where, when and how long you stay is who are’ to ‘what place, when and how long you stay is who you are’, to emphases the importance of ‘place’ in understanding human dynamics. We develop a method to integrate the semantic meaning and importance of places into the analysis by making use of Points of Interest (POIs) in the city. An individual’s profile is then built as a summary of the person’s time budget allocated in different semantic places. Based on these activity profiles, groups of people with similar patterns can be uncovered. The evolution from Space-Time to Place-Time enables analysis of a large population with much higher heterogeneity and dynamism in a large city-scale area. A case study with police foot patrol data demonstrates its practical usefulness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvares, O., et al. (2007). A model for enriching trajectories with semantic geographical information. In Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems. Article No. 22. New York: ACM. https://doi.org/10.1145/1341012.1341041.

  • Alves, A. O., Rodrigues, F., & Pereira, F. C. (2011). Tagging space from information extraction and popularity of points of interest. In International Joint Conference on Ambient Intelligence (pp. 115–125). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Andrew, A. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9(5), 216–219.

    Article  Google Scholar 

  • Andrienko, G., Andrienko, N., Bak, P., Keim, D., & Wrobel, S. (2013). Visual analytics of movement. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Bellman, R. E. (1961). Adaptive control processes: A guided tour. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Birant, D., & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data & Knowledge Engineering, 60, 208–221. https://doi.org/10.1016/j.datak.2006.01.013.

    Article  Google Scholar 

  • Braun, et al. (2010). Collaborative semantic points of interests. Extended semantic web conference (pp. 365–369). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Damiani, M. L., Silvestri, C., & Bertino, E. (2011). Fine-grained cloaking of sensitive positions in location-sharing applications. IEEE Pervasive Computing, 10(4), 64–72.

    Article  Google Scholar 

  • Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.

    Article  Google Scholar 

  • Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007). Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 330–339).

    Google Scholar 

  • Goodchild, M. (2015). Space, place and health. Annals of GIS, 21(2), 97–100.

    Google Scholar 

  • Güting, R. H., de Almeida, T., & Ding, Z. (2006). Modelling and querying moving objects in networks. International Journal on Very Large Data Bases, 15(2), 165–190.

    Article  Google Scholar 

  • Karli, S., & Saygin, Y. (2009). Mining periodic patterns in spatio-temporal sequences at different time granularities. Intelligent Data Analysis, 13(2), 301–335.

    Google Scholar 

  • Krüger, R., Thom, D., & Ertl, T. (2015). Semantic enrichment of movement behaviour with foursquare—A visual analytics approach. IEEE Transactions on Visualization and Computer Graphics, 21(8), 903–915.

    Article  Google Scholar 

  • Krüger, R., Thom, D., Wörner, M., Bosch, H., & Ertl, T. (2013). Trajectory lenses—A set-based filtering and exploration technique for long-term trajectory data. Computer Graphics Forum, 32, 451–460.

    Google Scholar 

  • Lee, J. G., Han, J., & Whang, K. Y. (2007). Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (pp. 593–604).

    Google Scholar 

  • Li, Z., Ding, B., Han, J., Kays, R., & Nye, P. (2010). Mining periodic behaviours for moving objects. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1099–1108).

    Google Scholar 

  • Liao, L., Patterson, D. J., Fox, D., & Kautz, H. (2006). Building personal maps from GPS data. Annals of the New York Academy of Sciences, 1093(1), 249–265.

    Article  Google Scholar 

  • Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115.

    Article  Google Scholar 

  • Miller, R., & Stout, F. (1988). Efficient parallel convex hull algorithms. IEEE Transactions on Computers, 37(12), 1605–1618.

    Article  Google Scholar 

  • Ordnance Survey. (2016). Points of interest [online]. Available from: https://www.ordnancesurvey.co.uk/business-and-government/products/points-of-interest.html.

  • Palma, A. T., Bogorny, V., Kuijpers, B., & Alvares, L. O. (2008). A clustering-based approach for discovering interesting places in trajectories. In Proceedings of the 2008 ACM symposium on Applied computing (pp. 863–868).

    Google Scholar 

  • Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M. L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., & Theodoridis, Y. (2013). Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR), 45(4), 42.

    Google Scholar 

  • Polisciuc, E. (2015). Understanding urban land use through the visualization of points of interest. In Proceedings of the Fourth Workshop on Vision and Language (pp. 51–59).

    Google Scholar 

  • Reumers, S., Liu, F., Janssens, D., Cools, M., & Wets, G. (2013). Semantic annotation of global positioning system traces: Activity type inference. Transportation Research Record: Journal of the Transportation Research Board, 2383, 35–43.

    Google Scholar 

  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513–523.

    Article  Google Scholar 

  • Shaw, S. L., Tsou, M. H., & Ye, X. (2016). Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30(9), 1687–1693.

    Article  Google Scholar 

  • Shen, J., & Cheng, T. (2016). A framework for identifying activity groups from individual space-time profiles. International Journal of Geographical Information Science, 30(9), 1785–1805. https://doi.org/10.1080/13658816.2016.1139119.

    Article  Google Scholar 

  • Slocum, T. A., McMaster, R. M., Kessler, F. C., Howard, H. H., & Mc Master, R. B. (2008). Thematic cartography and geographic visualization.

    Google Scholar 

  • Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F., & Vangenot, C. (2008). A conceptual view on trajectories. Data & Knowledge Engineering, 65(1), 126–146.

    Article  Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240.

    Article  Google Scholar 

  • Tsou, M. H. (2015). Research challenges and opportunities in mapping social media and big data. Cartography and Geographic Information Science, 42(1), 70–74. https://doi.org/10.1080/15230406.2015.1059251.

    Article  Google Scholar 

  • Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., & Aberer, K. (2013). Semantic trajectories: Mobility data computation and annotation. ACM Transactions on Intelligent Systems and Technology (TIST), 4(3), 49.

    Google Scholar 

  • Ying, J. J. C., Lee, W. C., & Tseng, V. S. (2013). Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Transactions on Intelligent Systems and Technology (TIST), 5(1), 2.

    Google Scholar 

  • Zhao, X., & Xu, W. (2011). Clustering spatio-temporal trajectories based on compression of interesting places. Journal of Beijing Jiaotong University, 3, 10.

    Google Scholar 

  • Zheng, Y., Chen, Y., Xie, X., & Ma, W. Y. (2009). GeoLife2. 0: a location-based social networking service. In Mobile Data Management: Systems, Services and Middleware (pp. 357–358).

    Google Scholar 

  • Zimmermann, M., Kirste, T., & Spiliopoulou, M. (2009). Finding stops in error-prone trajectories of moving objects with time-based clustering. Intelligent Interactive Assistance and Mobile Multimedia Computing (pp. 275–286). Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Acknowledgements

This work is part of the project—Crime, Policing and Citizenship (CPC): Space-Time Interactions of Dynamic Networks (www.ucl.ac.uk/cpc), supported by the UK Engineering and Physical Sciences Research Council (EP/J004197/1). The data provided by Metropolitan Police Service (London) is highly appreciated. The second author’s Ph.D. research is funded by the China Scholarship Council (CSC). The CSC is a non-profit institution with legal person status affiliated with the Ministry of Education in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, T., Shen, J. (2018). Grouping People in Cities: From Space-Time to Place-Time Based Profiling. In: Shaw, SL., Sui, D. (eds) Human Dynamics Research in Smart and Connected Communities. Human Dynamics in Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-73247-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73247-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73246-6

  • Online ISBN: 978-3-319-73247-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics