Skip to main content

Investigating Fish Larvae-Microbe Interactions in the 21st Century: Old Questions Studied with New Tools

  • Chapter
  • First Online:
Emerging Issues in Fish Larvae Research

Abstract

All animals need a mutualistic interaction with their microbiota for proper development and functioning. Also for the fish-microbiota interaction considerable research has been done, and especially for reared fish larvae this interaction is crucial for their viability. However, during the 1980s and 1990s a number of findings revealed at that time current methods were not suitable for studying the total microbial community and that data on composition of microbiota was biased. Several recent methodological revolutions have boosted the possibilities for addressing questions related to fish larvae-microbiota interactions that previously lacked suitable tools for proper evaluation. These methodological achievements include the development of experimental rearing systems including gnotobiotic systems for fish, new visualization tools, and molecular “omics” tools for characterizing the response of the host on a variety of levels and for characterizing both composition and activity of fish microbiota. We present and review these tools and give examples on how they have been used to improve our understanding of fish larvae-microbiota interactions. With respect to understanding, this includes in particular how the microbiota is established and maintained, what the functionality of the microbiota is and how it affects fish health, and finally how we can apply this knowledge for management of a healthy and beneficial microbiota in aquaculture settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V et al (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online 12(Suppl 1):5. https://doi.org/10.4137/EBO.S36436

    PubMed  PubMed Central  Google Scholar 

  • Andersson AF, Lindberg M, Jakobsson H et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3(7):e2836. https://doi.org/10.1371/journal.pone.0002836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armer HEJ, Maiggi G, Png KMY et al (2009) Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy. PLoS ONE 4:e7716. https://doi.org/10.1371/journal.pone.0007716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asakura T, Sakata K, Yoshida S et al (2014) Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ 2:e550. https://doi.org/10.7717/peerj.550

    Article  PubMed  PubMed Central  Google Scholar 

  • Aßhauer KP, Wemheuer B, Daniel R et al (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31(17):2882–2884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Attramadal KJ, Truong TMH, Bakke I et al (2014) RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae. Aquaculture 432:483–490

    Article  Google Scholar 

  • Baker JA, Ferguson M, Tenbroeck C (1942) Growth of platyfish (Platypoecilus maculatus) free from bacteria and other micro’organisms. Exp Biol Med 51:116–119. https://doi.org/10.3181/00379727-51-13854

    Article  Google Scholar 

  • Bakke I, Coward E, Andersen T et al (2015) Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua). Environ Microbiol 17(10):3914–3924

    Article  PubMed  Google Scholar 

  • Bakke I, Skjermo J, Vo TA et al (2013) Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua). Environ Microbiol Rep 5(4):537–548

    Article  PubMed  Google Scholar 

  • Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:19. https://doi.org/10.4137/BBI.S34610

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates J, Mittge E, Kuhlman J et al (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  CAS  PubMed  Google Scholar 

  • Battalora MSJ, Ellender RD, Martin BJ (1985) Gnotobiotic maintenance of Sheepshead minnow larvae. Prog Fish Cult 47(2):122–125. http://dx.doi.org/10.1577/1548-8640(1985)47<122:GMOSML>2.0.CO;2

  • Berry D, Mader E, Lee TK et al (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA 112:e194–e203. https://doi.org/10.1073/pnas.1420406112

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Stecher B, Schintlmeister A et al (2013) Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc Natl Acad Sci USA 110:4720–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bolnick DI, Snowberg LK, Hirsch PE et al (2014) Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 5. https://doi.org/10.1038/ncomms5500

  • Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, New York

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauton MS, Galloway TF, Kjørsvik E et al (2015) 1H NMR metabolic profiling of cod (Gadus morhua) larvae: potential effects of temperature and diet composition during early developmental stages. Biol Open 4(12):1671–1678. https://doi.org/10.1242/bio.014431

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(D1):D633–D642

    Article  CAS  PubMed  Google Scholar 

  • Declercq A, Chiers K, Van den Broeck W et al (2015) Interactions of highly and low virulent Flavobacterium columnare isolates with gill tissue in carp and rainbow trout. Vet Res 46:25–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14(3):251–258

    Article  PubMed  Google Scholar 

  • De Schryver P, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8(12):2360–2368

    Article  PubMed  PubMed Central  Google Scholar 

  • Dierckens K, Rekecki A, Laureau A et al (2009) Development of a bacterial challenge test for gnotobiotic sea bass (Dicentrarchus labrax) larvae. Environ Microbiol 11(2):526–533

    Article  CAS  PubMed  Google Scholar 

  • Douillet PA, Holt GJ (1994) Surface disinfection of red drum (Sciaenops ocellatus Linnaeus) eggs leading to bacteria-free larvae. J Exp Mar Biol Ecol 179(2):253–266

    Article  Google Scholar 

  • Duarte CM, Holmer M, Olsen Y et al (2009) Will the oceans help feed humanity? Bioscience 59(11):967–976

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    Article  CAS  PubMed  Google Scholar 

  • Elie MR, Choi J, Nkrumah-Elie YM et al (2015) Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res 140:502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjellheim AJ, Klinkenberg G, Skjermo J et al (2010) Selection of candidate probionts by two different screening strategies from Atlantic cod (Gadus morhua L.) larvae. Vet Microbiol 144(1):153–159

    Article  PubMed  Google Scholar 

  • Fjellheim AJ, Playfoot KJ, Skjermo J et al (2012) Inter‐individual variation in the dominant intestinal microbiota of reared Atlantic cod (Gadus morhua L.) larvae. Aquac Res 43(10):1499–1508

    Google Scholar 

  • Forberg T, Arukwe A, Vadstein O (2011) A protocol and cultivation system for gnotobiotic Atlantic cod larvae (Gadus morhua L.) as a tool to study host microbe interactions. Aquaculture 315(3–4):222–227

    Article  Google Scholar 

  • Forberg T, Milligan-Myhre K (2017) Gnotobiotic fish as models to study host-microbe interactions. In: Schoeb T, Eaton K (eds) Gnotobiotcs, 1st edn. Academic Press, United States, chapter 6

    Google Scholar 

  • Forberg T, Sjulstad EB, Bakke I et al (2016) Correlation between microbiota and growth in Mangrove Killifish (Kryptolebias marmoratus) and Atlantic cod (Gadus morhua). Sci Rep 6. https://doi.org/10.1038/srep21192

  • Forberg T, Vestrum RI, Arukwe A et al (2012) Bacterial composition and activity determines host gene-expression responses in gnotobiotic Atlantic cod (Gadus morhua) larvae. Vet Microbiol 157(3):420–427

    Article  CAS  PubMed  Google Scholar 

  • Ghanbari M, Kneifel W, Domig KJ (2015) A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448:464–475

    Article  CAS  Google Scholar 

  • Goodale BC, Tilton SC, Corvi MM et al (2013) Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicol Appl Pharm 272(3):656–670

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    Article  CAS  PubMed  Google Scholar 

  • Gunasekara RAYSA, Defoirdt T, Rekecki A et al (2012) Light and transmission electron microscopy of Vibrio campbellii infection in gnotobiotic Artemia franciscana and protection offered by a yeast mutant with elevated cell wall glucan. Vet Microbiol 158:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gurbani D, Bharti SK, Kumar A et al (2013) Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Envir Heal 216(5):553–565

    Article  CAS  Google Scholar 

  • Hamre K (2006) Nutrition in cod (Gadus morhua) larvae and juveniles. ICES J Mar Sci: J Conseil 63(2):267–274

    Article  Google Scholar 

  • Hansen G, Olafsen J (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Strøm E, Olafsen J (1992) Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae. Appl Environ Microbiol 58:461–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holben WE, Williams P, Saarinen M et al (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2): reviews0003–0001 https://doi.org/10.1186/gb-2002-3-2-reviews0003

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasundara N, Van Tiem Garner L, Meyer JN et al (2015) AHR2-mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol Sci 143(2):469–481

    Article  CAS  PubMed  Google Scholar 

  • Kanther M, Rawls JF (2010) Host–microbe interactions in the developing zebrafish. Curr Opin Immunol 22(1):10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karner M, Fuhrman JA (1997) Determination of active marine bacterioplankton: a comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microb 63(4):1208–1213

    CAS  Google Scholar 

  • Kim DH, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102(6):1654–1664

    Article  CAS  PubMed  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR et al (2001) rrnDB: the ribosomal RNA operon copy number database. Nucleic Acids Res 29(1):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klar T, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knierim B, Luef B, Wilmes P et al (2011) Correlative microscopy for phylogenetic and ultrastructural characterization of microbial communities. Environ Microbiol Rep 4:36–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesel R, Lesel M (1976) Obtention d’alevins non vésiculés axéniques de salmonides. Ann Hydrobiol 7(1):21–25

    Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH et al (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. In: Sime-Ngando T, Lafferty KD and Biron DG (ed) Roles and mechanisms of parasitism in aquatic microbial communities, Frontiers Media, Lausanne, 109 https://doi.org/10.3389/978-2-88919-588-6

  • Llewellyn MS, McGinnity P, Dionne M et al (2016) The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J 10(5):1280–1284

    Article  PubMed  Google Scholar 

  • Luef B, Frischkorn KR, Wrighton KC et al (2015) Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun 6:6372. https://doi.org/10.1038/ncomms7372

    Article  CAS  PubMed  Google Scholar 

  • Moullan N, Mouchiroud L, Wang X et al (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10(10):1681–1691

    Article  CAS  Google Scholar 

  • Milligan-Myhre K, Small CM, Mittge EK et al (2016) Innate immune responses to gut microbiota differ between threespine stickleback populations. Dis Model Mech 9:187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne JLS, Subramaniam S (2009) Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 7:666–675

    Article  CAS  PubMed  Google Scholar 

  • Montalban-Arques A, De Schryver P, Bossier P et al (2015) Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol 6:512. https://doi.org/10.3389/fimmu.2015.00512

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller EE, Glaab E, May P et al (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21(7):325–333

    Article  CAS  PubMed  Google Scholar 

  • Munro PD, Barbour A, Birkbeck TH (1995) Comparison of the growth and survival of larval turbot in the absence of culturable bacteria with those in the presence of Vibrio anguillarum, Vibrio alginolyticus, or a marine Aeromonas sp. Appl Env Microbiol 61(12):4425–4428

    CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59(3):695–700

    CAS  Google Scholar 

  • Müller-Reichert T, Verkade P (eds) (2012) Methods in cell biology, vol 111, Correlative light and electron microscopy. Academic Press, United States

    Google Scholar 

  • Navarrete P, Espejo R, Romero J (2009) Molecular analysis of microbiota along the digestive tract of juvenile Atlantic salmon (Salmo salar L.). Microb Ecol 57(3):550–561

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41(11):1553–1573

    Article  Google Scholar 

  • Nielsen J (2006) Metabolomics in functional genomics and systems biology. In: Villas-Bôas SG, Roessner U, Hansen MAE et al (eds) Metabolome analysis: an introduction. Wiley, Hoboken, New Jersey, pp 1–14

    Google Scholar 

  • NORM/NORM-VET (2011) Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway. Tromsø/Oslo 2012. ISSN:1502-2307 (print), 1890-9965 (electronic)

    Google Scholar 

  • Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200(1):223–247

    Article  Google Scholar 

  • O’Toole R, von Hofsten J, Rosqvist R et al (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37:41–46

    Article  PubMed  CAS  Google Scholar 

  • Penglase S, Edvardsen RB, Furmanek T et al (2015) Diet affects the redox system in developing Atlantic cod (Gadus morhua) larvae. Redox Biol 5:308–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham LN, Kanther M, Semova I et al (2008) Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc 3(12):1862–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plitzko J, Rigort A, Leis A (2009) Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr Opin Biotechnol 20:83–89

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Ba Y, Zhuang Q et al (2014) RNA-Seq technology and its application in fish transcriptomics. OMICS 18(2):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajan B, Fernandes JMO, Caipang CMA et al (2011) Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immun 31(2):224–231

    Article  CAS  Google Scholar 

  • Rajan B, Lokesh J, Kiron V et al (2013) Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Vet Res 9(1):103. https://doi.org/10.1186/1746-6148-9-103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101(13):4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitan K, Natvik C, Vadstein O (1998) Drinking rate, uptake of bacteria and microalgae in turbot larvae. J Fish Biol 53(6):1145–1154

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G et al (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155(1):207–221

    Article  Google Scholar 

  • Rekecki A, Dierckens K, Laureau S et al (2009) Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.). Aquaculture 293:8–15

    Article  Google Scholar 

  • Rekecki A, Gunasekara RAYSA, Dierckens K et al (2012) Bacterial host interaction of GFP-labelled Vibrio anguillarum HI-610 with gnotobiotic sea bass, Dicentrarchus labrax (L.), larvae. J Fish Dis 35(4):265–273

    Article  CAS  PubMed  Google Scholar 

  • Rekecki A, Ringø E, Olsen R et al (2013) Luminal uptake of Vibrio (Listonella) anguillarum by shed enterocytes—a novel early defence strategy in larval fish. J Fish Dis 36:419–426

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Birkbeck T (1999) Intestinal microflora of fish larvae and fry. Aquac Res 30(2):73–93

    Article  Google Scholar 

  • Ringø E, Olsen RE, Mayhew TM et al (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415

    Article  Google Scholar 

  • Ringø E, Sperstad S, Myklebust R et al (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841

    Article  CAS  Google Scholar 

  • Roberts LD, Souza SL, Gerszten RE et al. (2012) Targeted metabolomics. Curr Protoc Mol Biol 98:30.2:30.2.1–30.2.24. https://doi.org/10.1002/0471142727.mb3002s98

  • Rodrigues PM, Silva TS, Dias J et al (2012) Proteomics in aquaculture: applications and trends. J Proteomics 75(14):4325–4345

    Article  CAS  PubMed  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ et al (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5(10):1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero J, Navarrete P (2006) 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb Ecol 51(4):422–430

    Article  CAS  PubMed  Google Scholar 

  • Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–796

    Article  CAS  Google Scholar 

  • Salvesen I, Skjermo J, Vadstein O (1999) Growth of turbot (Scophthalmus maximus L.) during first feeding in relation to the proportion of r/K-strategists in the bacterial community of the rearing water. Aquaculture 175(3):337–350

    Article  Google Scholar 

  • Sandlund N, Bergh Ø (2008) Screening and characterisation of potentially pathogenic bacteria associated with Atlantic cod Gadus morhua larvae: bath challenge trials using a multidish system. Dis Aquat Organ 1(3):203–217

    Article  Google Scholar 

  • Sarropoulou E, Galindo-Villegas J, García-Alcázar A et al (2012) Characterization of European Sea Bass transcripts by RNA SEQ after oral vaccine against V. anguillarum. Mar. Biotechnol 14(5):634–642

    CAS  Google Scholar 

  • Sartori A, Gatz R, Beck F et al (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin R et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM et al (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  CAS  PubMed  Google Scholar 

  • Shaw ES, Aronson LR (1954) Oral incubation in Tilapia macrocephala. B Am Mus Nat Hist 103(5):375–416

    Google Scholar 

  • Situmorang ML, Dierckens K, Mlingi FT et al (2014) Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae. Dis Aquat Organ 109(1):23–33

    Article  PubMed  Google Scholar 

  • Skjermo J, Salvesen I, Øie G et al (1997) Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquacult Int 5(1):13–28

    Article  Google Scholar 

  • Smedsgaard J (2006) Analytical tools. In: Villas-Bôas SG, Roessner U, Hansen MAE et al (eds) Metabolome analysis: an introduction. Wiley, Hoboken, New Jersey, pp 83–145

    Google Scholar 

  • Smirnov KS, Maier TV, Walker A et al (2016) Challenges of metabolomics in human gut microbiota research. Int J Med Microbiol 306(5):266–279

    Article  CAS  PubMed  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stecher B, Berry D, Loy A (2013) Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 37:793–829

    Article  CAS  PubMed  Google Scholar 

  • Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246(1–4):37–61

    Article  Google Scholar 

  • Trust TJ (1974) Sterility of Salmonid Roe and practicality of hatching gnotobiotic Salmonid fish. Appl Environ Microb 28(3):340–341

    CAS  Google Scholar 

  • Vadstein O, Bergh Ø, Gatesoupe FJ et al (2013) Microbiology and immunology of fish larvae. Rev Aquacult 5(Suppl. 1):S1–S25

    Article  Google Scholar 

  • Vadstein O, Øie G, Olsen Y et al (1993) A strategy to obtain microbial control during larval development of marine fish. In: Reinertsen H, Dahle LA, Jørgensen L et al (eds) Fish farming technology. Balkema, Rotterdam, pp 69–75

    Google Scholar 

  • Verner-Jeffreys DW, Shields RJ, Birkbeck TH (2003) Bacterial influences on Atlantic halibut Hippoglossus hippoglossus yolk-sac larval survival and start-feed response. Dis Aquat Organ 56(2):105–113

    Article  PubMed  Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann AJ, Förstner KU, Amman F et al (2016) Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature 529(7587):496–501

    Article  CAS  PubMed  Google Scholar 

  • Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M, Hou Z, Yuan J et al (2013) Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmed adult turbot (Scophthalmus maximus). FEMS Microbiol Ecol 86(3):432–443

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Abraham PE, Li Z et al (2015) Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 15(20):3424–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100(18):10452–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Shimada Y, Hirota T et al (2016) Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish. Transl Res 170(89–98):e83. https://doi.org/10.1016/j.trsl.2015.12.007

    Google Scholar 

Download references

Acknowledgements

This work was a part of the ERA-Net COFASP project MicStaTech “Water treatment technology for microbial stabilization in landbased aquaculture systems” funded by the Research Council of Norway (Contract 247558), the Research Council of Norway project MicroMucus: “Microbial contributions to the Atlantic salmon (Salmo salar) skin mucosal barrier” (NRC project no. 262929/F20), a People Marie Curie Actions International Incoming Fellowships FP7-PEOPLE-2013-IIF (project number 625655) to B.L., and a Ph.D. scholarship to R. I. V. from the Faculty of Science, NTNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Vadstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vestrum, R.I., Luef, B., Forberg, T., Bakke, I., Vadstein, O. (2018). Investigating Fish Larvae-Microbe Interactions in the 21st Century: Old Questions Studied with New Tools. In: Yúfera, M. (eds) Emerging Issues in Fish Larvae Research. Springer, Cham. https://doi.org/10.1007/978-3-319-73244-2_1

Download citation

Publish with us

Policies and ethics