Independence, Domination, and Vertex Cover

  • K. Erciyes
Part of the Texts in Computer Science book series (TCS)


Subgraphs of a graph may have some special properties and detecting these subgraphs may be useful for various applications. In this chapter, we study theory and sequential, parallel, and distributed algorithms for three such special subgraphs: independent sets, dominating sets, and vertex cover.


  1. 2.
    Erciyes K (2013) Distributed graph algorithms for computer networks (Chap. 10). Computer communications and networks series, Springer, Berlin. ISBN 978-1-4471-5172-2CrossRefGoogle Scholar
  2. 3.
    Garey MR, Johnson DS (1978) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New YorkGoogle Scholar
  3. 4.
    Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing (Chapter 10), 2nd edn. Addison Wesley, ReadingGoogle Scholar
  4. 6.
    Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 20(4):374–387MathSciNetCrossRefGoogle Scholar
  5. 8.
    König D (1931) Graphen und Matrizen. Math Lapok 38:116119Google Scholar
  6. 9.
    Koufogiannakis C, Young N (2009) Distributed and parallel algorithms for weighted vertex cover and other covering problems. In: The 28th ACM SIGACT-SIGOPS symposium on principles of distributed computing (PODC 2009)Google Scholar
  7. 10.
    Luby M (1986) A simple parallel algorithm for the maximal independent set problem. SIAM J Comput 15(4):1036–1053MathSciNetCrossRefGoogle Scholar
  8. 11.
    Parnas M, Ron D (2007) Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor Comput Sci 381(1):183–196MathSciNetCrossRefGoogle Scholar
  9. 12.
    Rhodes N, Willett P, Calvet A, Dunbar JB, Humblet C (2003) Clip: similarity searching of 3d databases using clique detection. J Chem Inf Comput Sci 43(2):443448CrossRefGoogle Scholar
  10. 13.
    Samudrala R, Moult J (2006) A graph-theoretic algorithm for comparative modeling of protein structure. J Mol Biol 279(1):287302Google Scholar
  11. 14.
    Stein C (2012) IEOR 8100. Lecture notes. Columbia UniversityGoogle Scholar
  12. 15.
    Wattenhofer R (2016) Principles of distributed computing (Chapter 7). Class notes. ETH ZurichGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Computer InstituteEge UniversityIzmirTurkey

Personalised recommendations