Advertisement

Etherification of Cellulose

  • Thomas Heinze
  • Omar A. El Seoud
  • Andreas Koschella
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Cellulose ethers are of huge importance and produced commercially in large scales; the worldwide consumption of cellulosic ethers in 2006 was estimated to be 637,000 t.

References

  1. 1.
    Dahlgren L (1987) Cellulose ethers—properties and applications. In: Kennedy JF, Phillips GO, Williams PA (eds) Wood Cellulose. Horwood Publishing, Chichester, pp 427–439Google Scholar
  2. 2.
    Nicholson MD, Merritt FM (1989) Cellulose ethers. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry. Its application. Horwood Publishing, Chichester, UK, pp 363–383Google Scholar
  3. 3.
    Feddersen RL, Thorp SN (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums, polysaccharides and their derivatives, 3rd edn. Academic Press, Inc., San Diego, Boston, New York, USA, p 537Google Scholar
  4. 4.
    Baar A, Kulicke W-M, Szablikowski K, Kiesewetter R (1994) Nuclear magnetic resonance spectroscopic characterization of carboxymethyl cellulose. Macromol Chem Phys 195:1483–1492CrossRefGoogle Scholar
  5. 5.
    Reuben J, Conner HT (1983) Analysis of the carbon-13 NMR spectrum of hydrolyzed O-(carboxymethyl)cellulose: monomer composition and substitution patterns. Carbohydr Res 115:1–13CrossRefGoogle Scholar
  6. 6.
    Tezuka Y, Tsuchiya Y, Shiomi T (1996) Proton and carbon-13 NMR structural study on cellulose and polysaccharide derivatives with carbonyl groups as a sensitive probe. Part II. Carbon-13 NMR determination of substituent distribution in carboxymethyl cellulose by use of its peresterified derivatives. Carbohydr Res 291:99–108CrossRefGoogle Scholar
  7. 7.
    Kragten EA, Kamerling JP, Vliegenthart JFG (1992) Composition analysis of carboxymethylcellulose by high-pH anion-exchange chromatography with pulsed amperometric detection. J Chromatogr 623:49–53CrossRefGoogle Scholar
  8. 8.
    Heinze T, Erler U, Nehls I, Klemm D (1994) Determination of the substituent pattern of heterogeneously and homogeneously synthesized carboxymethyl cellulose by using high-performance liquid chromatography. Angew Makromol Chem 215:93–106CrossRefGoogle Scholar
  9. 9.
    Liebert T, Heinze T (1998) Induced phase separation: a new synthesis concept in cellulose chemistry. ACS Symp Ser 688:61–72CrossRefGoogle Scholar
  10. 10.
    Heinze T (1997) Ionische Funktionspolymere aus Cellulose: Neue Synthesekonzepte, Strukturaufklärung und Eigenschaften. Habilitation Thesis, Friedrich Schiller University of JenaGoogle Scholar
  11. 11.
    Burger J, Kettenbach G, Klüfers P (1995) Polyol metal complexes. Part 14. Coordination equilibria in transition metal based cellulose solvents. Macromol Symp 99:113–126CrossRefGoogle Scholar
  12. 12.
    Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165CrossRefGoogle Scholar
  13. 13.
    Käuper P, Kulicke W-M, Horner S, Saake B, Puls J, Kunze J, Fink H-P, Heinze U, Heinze T, Klohr EA, Thielking H, Koch W (1998) Development and evaluation of methods for determining the pattern of functionalization in sodium carboxymethylcelluloses. Angew Makromol Chem 260:53–63CrossRefGoogle Scholar
  14. 14.
    Myllymaeki V, Aksela R (2005) Etherification of cellulose in ionic liquid solutions. WO2005054298A1. CAN 143:28326Google Scholar
  15. 15.
    Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRefGoogle Scholar
  16. 16.
    Ramos LA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267CrossRefGoogle Scholar
  17. 17.
    Heinze T, Köhler S (2010) Dimethyl sulfoxide and ammonium fluorides—a novel cellulose solvent. ACS Symp Ser 1033:108–118Google Scholar
  18. 18.
    Liebert T, Klemm D, Heinze T (1996) Synthesis and carboxymethylation of organo-soluble trifluoroacetates and formates of cellulose. J Macromol Sci Part A Pure Appl Chem A33:613–626CrossRefGoogle Scholar
  19. 19.
    Saake B, Horner S, Kruse T, Puls J, Liebert T, Heinze T (2000) Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol Chem Phys 201:1996–2002CrossRefGoogle Scholar
  20. 20.
    Clasen C, Wilhelms T, Kulicke W-M (2006) Formation and characterization of chitosan membranes. Biomacromol 7:3210–3222CrossRefGoogle Scholar
  21. 21.
    Baklagina YG, Kononova SV, Petrova VA, Kruchinina EV, Nud’ga LA, Romanov DP, Klechkovskaya VV, Orekhov AS, Bogomazov AV, Arkhipov SN (2013) Study of polyelectrolyte complexes of chitosan and sulfoethyl cellulose. Crystallogr Rep 58:287–294Google Scholar
  22. 22.
    Schwarz H-H, Lukáš J, Richau K (2003) Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes. J Membr Sci 218:1–9CrossRefGoogle Scholar
  23. 23.
    Rose T, Neumann B, Thielking H, Koch W, Vorlop K-D (2000) Hollow beads of Sulfoethyl Cellulose (SEC) on the basis of polyelectrolyte complexes. Chem Eng Technol 23:769–772CrossRefGoogle Scholar
  24. 24.
    Shimizu T, Tadokoro K, Suganuma A, Hirose M (1984) Chromatography of inorganic ions on sulfoethyl cellulose layer in mixed sulfuric acid-organic solvent media. Chromatographia 18:692–694CrossRefGoogle Scholar
  25. 25.
    Glasser WG, Michalek A (2006) Sulfoalkylated cellulose having superabsorbent properties and method for its manufacture. US 20060142560 A1 20060629, CAN 145:105442Google Scholar
  26. 26.
    Donges R, Kirchner J (2000) Water-soluble hydrophobically modified sulfoalkyl cellulose ethers, process for making the same and their use in dispersion paints. EP 997478 A1 20000503, CAN 132:323031Google Scholar
  27. 27.
    Höhl F, Schlesiger H, Kiesewetter R (2001) Manufacture of (methyl- and hydroxyalkyl-substituted) sulfoalkyl-modified cellulose ethers as nonassociative thickeners for aqueous coating systems. DE 19935323 A1 20010201 CAN134:133138Google Scholar
  28. 28.
    Kiesewetter R, Szablikowski K, Lange W (1993) Water-soluble sulfoalkyl-hydroxyalkyl cellulose derivatives, and their use in cement and/or gypsum compositions. EP 554749 A2 19930811, CAN120:306034Google Scholar
  29. 29.
    Zhang K, Brendler E, Gebauer K, Gruner M, Fischer S (2011) Synthesis and characterization of low sulfoethylated cellulose. Carbohydr Polym 83:616–622CrossRefGoogle Scholar
  30. 30.
    Talába P, Sroková I, Ebringerová A, Hodul P, Marcinčin A (1997) Cellulose-based biodegradable polymeric surfactants. J Carbohydr Chem 16:573–582CrossRefGoogle Scholar
  31. 31.
    Heinze T, Haack V, Rensing S (2004) Starch derivatives of high degree of functionalization. 7. Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starches. Starch/Staerke 56:288–296CrossRefGoogle Scholar
  32. 32.
    Podgornyi VF, Gur’ev VP (1981) Simple method for the synthesis of AE-cellulose—matrix for profenzym production. Immobilizovannye Proteoliticheskie Fermnty Lech Gnoino-Nekroticheskikh Protsessov 124–131Google Scholar
  33. 33.
    Bischoff KH, Dautzenberg H (1977) Aminoethylated cellulose powder. DD 124419 A1 19770223, CAN88:24439Google Scholar
  34. 34.
    Soignet DM, Benerito RR (1967) Improved preparation of diethylaminoethyl-cotton-fabrics. Text Res J 37:1001–1003CrossRefGoogle Scholar
  35. 35.
    Rousseau RW, Ferrell JK, Reardon RF (1984) Synthesis of diethylaminoethyl cellulose on cotton fabric. Ind Eng Chem Prod Res Dev 23:250–252CrossRefGoogle Scholar
  36. 36.
    Yang H, Thyrion FC (1996) Kinetic studies of the reaction of 2-diethylaminoethylchloride with nucleophilic reagents in N, N-dimethylformamide. Bull Soc Chim Belg 105:23–31CrossRefGoogle Scholar
  37. 37.
    Noreika R, Zdanavicius J (1971) Reaction of cellulose with diethylepoxypropylamine. Cellul Chem Technol 5:117–129Google Scholar
  38. 38.
    Acikara ÖB (2013) Ion-exchange chromatography and its applications. In: Martin D (ed) Chapter 2 in column chromatography, InTechGoogle Scholar
  39. 39.
  40. 40.
    Liesiene J (2010) Synthesis of water-soluble cationic cellulose derivatives with tertiary amino groups. Cellulose 17:167–172CrossRefGoogle Scholar
  41. 41.
    Prado HJ, Matulewicz MC (2014) Cationization of polysaccharides: a path to greener derivatives with many industrial applications. Eur Polym J 52:53–75Google Scholar
  42. 42.
    Käufer K, Krause T, Schempp W (1980) Production of cationic pulps. Effect of different variables on the degree of substitution and on yield. Papier (Bingen, Germany) 34:575–579Google Scholar
  43. 43.
    www.quab.com. Accessed May 2015; www.dow.com/quat. Accessed May 2015
  44. 44.
    Gruber E, Granzow C, Ott T (1996) New ways to cationic cellulose. Papier (Darmstadt) 50:729–734Google Scholar
  45. 45.
    Hashem M, El-Bisi M, Sharaf S, Refaie R (2010) Pre-cationization of cotton fabrics: an effective alternative tool for activation of hydrogen peroxide bleaching process. Carbohydr Polym 79:533–540CrossRefGoogle Scholar
  46. 46.
    Acharya S, Abidi N, Rajbhandari R, Meulewaeter F (2014) Chemical cationization of cotton fabric for improved dye uptake. Cellulose 21:4693–4706CrossRefGoogle Scholar
  47. 47.
    Ott G, Schempp W, Krause T (1989) Preparation of cationic cellulose with high degree of substitution in lithium chloride/dimethylacetamide. Papier (Bingen, Germany) 43:694–699Google Scholar
  48. 48.
    Pašteka M (1988) Quaternization of regenerated cellulose under homogeneous reaction conditions. Acta Polym 39:130–132CrossRefGoogle Scholar
  49. 49.
    Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264CrossRefGoogle Scholar
  50. 50.
    Yan L, Tao H, Bangal PR (2009) Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution. Clean Soil Air Water 37:39–44CrossRefGoogle Scholar
  51. 51.
    Song Y, Wang H, Zeng X, Sun Y, Zhang X, Zhou J, Zhang L (2010) Effect of molecular weight and degree of substitution of quaternized cellulose on the efficiency of gene transfection. Bioconjug Chem 21:1271–1279CrossRefGoogle Scholar
  52. 52.
    Song Y, Zhang J, Gan W, Zhou J, Zhang L (2010) Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution. Ind Eng Chem Res 49:1242–1246CrossRefGoogle Scholar
  53. 53.
    Hossel P, Dieing R, Norenberg R, Pfau A, Sander R (2000) Conditioning polymers in today’s shampoo formulations—efficacy, mechanism and test methods. Int J Cosmet Sci 22:1–10CrossRefGoogle Scholar
  54. 54.
    Liesiene J, Kazlauske J (2013) Functionalization of cellulose: synthesis of water-soluble cationic cellulose derivatives. Cellul Chem Technol 47:515–525Google Scholar
  55. 55.
    Methocell cellulose ethers technical handbook, 2002. The Dow Chemical Company, USAGoogle Scholar
  56. 56.
    Ethocell ethylcellulose polymers technical handbook, 2005. The Dow Chemical Company, USAGoogle Scholar
  57. 57.
    Benecel high purity methylcellulose, methylhydroxypropylcellulose, hypromellose physical and chemical properties. Ashland Inc., USAGoogle Scholar
  58. 58.
    Aqualon ethylcellulose physical and chemical properties, 2002. Ashland Inc., USAGoogle Scholar
  59. 59.
    Dönges R (1990) Nonionic cellulose ethers. Brit Polym J 23:315–326Google Scholar
  60. 60.
    Jay A (1996) The methylation reaction in carbohydrate analysis. J Carbohydr Chem 15:897–923CrossRefGoogle Scholar
  61. 61.
    Hirrien M, Desbrières J, Rinaudo M (1997) Physical properties of methyl celluloses in relation with the conditions for cellulose modification. Carbohydr Polym 31:243–252CrossRefGoogle Scholar
  62. 62.
    Petruš L, Gray DG, BeMiller JN (1995) Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in LiCl/Me2S. Carbohydr Res 268:319–323CrossRefGoogle Scholar
  63. 63.
    Zhou J, Xu Y, Wang X, Qin Y, Zhang L (2008) Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohydr Polym 74:901–906CrossRefGoogle Scholar
  64. 64.
    Nagel MCV, Koschella A, Voiges K, Mischnick P, Heinze T (2010) Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur Polym J 46:1726–1735CrossRefGoogle Scholar
  65. 65.
    Sun S, Foster TJ, MacNaughtan W, Mitchell JR, Fenn D, Koschella A, Heinze T (2009) Self-association of cellulose ethers with random and regioselective distribution of substitution. J Polym Sci Part B Polym Phys 47:1743–1752CrossRefGoogle Scholar
  66. 66.
    Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068CrossRefGoogle Scholar
  67. 67.
    McAllister JW, Schmidt PW, Dorfman KD, Lodge TP, Bates FS (2015) Thermodynamics of aqueous methylcellulose solutions. Macromolecules 48:7205–7215CrossRefGoogle Scholar
  68. 68.
    Wang Q, Li L (2005) Effects of molecular weight on the thermoreversible gelation and gel elasticity of methylcellulose in aqueous solution. Carbohydr Polym 62:232–238CrossRefGoogle Scholar
  69. 69.
    Heinze T, Pfeifer A, Sarbova V, Koschella A (2011) 3-O-Propyl cellulose: cellulose ether with exceptionally low flocculation temperature. Polym Bull 66:1219–1229CrossRefGoogle Scholar
  70. 70.
    Braun D, Meuret B (1989) Benzyl cellulose as thermoplastic resin. I. Preparation and characterization. Papier (Bingen, Germany) 43:688–694Google Scholar
  71. 71.
    Ramos LA, Frollini E, Koschella A, Heinze T (2005) Benzylation of cellulose in the solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate. Cellulose 12:607–619CrossRefGoogle Scholar
  72. 72.
    Daly WH, Caldwell JD (1979) Influence of quaternary ammonium salts on cellulose benzylation. J Polym Sci Polym Lett Ed 17:55–63CrossRefGoogle Scholar
  73. 73.
    Rohleder E, Heinze T (2010) Comparison of benzyl cellulose synthesized in aqueous NaOH and dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Symp 294:107–116CrossRefGoogle Scholar
  74. 74.
    Li MF, Sun SN, Xu F, Sun RC (2011) Cold NaOH/urea aqueous dissolved cellulose for benzylation: synthesis and characterization. Eur Polym J 47:1817–1826CrossRefGoogle Scholar
  75. 75.
    Erler U, Klemm D, Nehls I (1992) Homogeneous synthesis of diphenylmethyl ethers of cellulose in N, N-dimethylacetamide/lithium chloride solvent system. Makromol Chem Rapid Commun 13:195–201CrossRefGoogle Scholar
  76. 76.
    Hagiwara I, Shiraishi N, Yokota T, Norimoto M, Hayashi Y (1981) Homogeneous tritylation of cellulose in a sulfur dioxide—diethylamine—dimethyl sulfoxide medium. J Wood Chem Technol 1:93–109Google Scholar
  77. 77.
    Camacho Gómez JA, Erler UW, Klemm DO (1996) 4-Methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964CrossRefGoogle Scholar
  78. 78.
    Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69:347–352CrossRefGoogle Scholar
  79. 79.
    Faugeras PA, Elchinger PH, Brouillette F, Montplaisir D, Zerrouki R (2012) Advances in cellulose chemistry—microwave-assisted synthesis of propargylcellulose in aqueous medium. Green Chem 14:598–600CrossRefGoogle Scholar
  80. 80.
    Hu H, You J, Gan W, Zhou J, Zhang L (2015) Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol—ene click reactions. Polym Chem 6:3543–3548CrossRefGoogle Scholar
  81. 81.
    Volkert B, Wagenknecht W, Mai M (2010) Structure-property relationship of cellulose ethers—influence of the synthetic pathway on cyanoethylation. ACS Symp Ser 1033:319–341CrossRefGoogle Scholar
  82. 82.
    Zhou J, Li Q, Song Y, Zhang L, Lin X (2010) A facile method for the homogeneous synthesis of cyanoethyl cellulose in NaOH/urea aqueous solutions. Polym Chem 1:1662–1668CrossRefGoogle Scholar
  83. 83.
    Li Q, Wu P, Zhou J, Zhang L (2012) Structure and solution properties of cyanoethyl celluloses synthesized in LiOH/urea aqueous solution. Cellulose 19:161–169CrossRefGoogle Scholar
  84. 84.
    Li W, Liu R, Kang H, Sun Y, Dong F, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563CrossRefGoogle Scholar
  85. 85.
    Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100:329–334CrossRefGoogle Scholar
  86. 86.
    Natrosol® Hydroxyethylcellulose A nonionic water-soluble polymer, 1999. Ashland Inc., USAGoogle Scholar
  87. 87.
    Cellosize hydroxyethyl cellulose, 2005. The Dow Chemical Company, USAGoogle Scholar
  88. 88.
    Klucel hydroxypropylcellulose physical and chemical properties, 2012. Ashland Inc., USAGoogle Scholar
  89. 89.
    Li CL, Martini LG, Ford JL, Roberts M (2005) The use of hypromellose in oral drug delivery. J Pharm Pharmacol 57:533–546CrossRefGoogle Scholar
  90. 90.
    Sharma V, Haward SJ, Serdy J, Keshavarz B, Soderlund A, Threlfall-Holmes P, McKinley GH (2015) The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11:3251–3270CrossRefGoogle Scholar
  91. 91.
    Wang J, Somasundaran P (2006) Mechanisms of ethyl(hydroxyethyl) cellulose–solid interaction: influence of hydrophobic modification. J Colloid Interface Sci 293:322–332CrossRefGoogle Scholar
  92. 92.
    Karlberg M, Thuresson K, Lindman B (2005) Hydrophobically modified ethyl(hydroxyethyl) cellulose as stabilizer and emulsifying agent in macroemulsions. Colloids Surf A 262:158–167Google Scholar
  93. 93.
    Arisz PW, Thai HTT, Boon JJ, Salomons WG (1996) Changes in substituent distribution patterns during the conversion of cellulose to O-(2-hydroxyethyl) celluloses. Cellulose 3:45–61CrossRefGoogle Scholar
  94. 94.
    Asandei N, Perju N, Nicolescu R, Ciovica S (1995) Some aspects concerning the synthesis and properties of hydroxypropyl cellulose. Cellul Chem Technol 29:261–271Google Scholar
  95. 95.
    Köhler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Möllmann E, Becker W (2010) Interaction of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448CrossRefGoogle Scholar
  96. 96.
    Zhou J, Qin Y, Liu S, Zhang L (2006) Homogeneous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution. Macromol Biosci 6:84–89CrossRefGoogle Scholar
  97. 97.
    Baker TJ, Schroeder LR, Johnson DC (1981) Formation of methylol cellulose and its dissolution in polar aprotic solvents. Cellul Chem Technol 15:311–320Google Scholar
  98. 98.
    Klemm D, Schnabelrauch M, Stein A, Philipp B, Wagenknecht W, Nehls I (1990) New results for homogeneous esterification of cellulose by soluble intermediates. Papier (Bingen, Germany) 44:624–632Google Scholar
  99. 99.
    Kostag M, Köhler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294(II):96–106Google Scholar
  100. 100.
    Mormann W, Wezstein M (2009) Trimethylsilylation of cellulose in ionic liquids. Macromol Biosci 9:369–375CrossRefGoogle Scholar
  101. 101.
    Köhler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci Part A Polym Chem 46:4070–4080CrossRefGoogle Scholar
  102. 102.
    Klebe JF, Finkbeiner HL (1969) Silyl celluloses: a new class of soluble cellulose derivatives. J Polym Sci Part A-1 Polym Chem 7:1947–1958Google Scholar
  103. 103.
    Greber G, Paschinger O (1981) Silyl derivates of cellulose. Papier (Bingen, Germany) 35:547–554Google Scholar
  104. 104.
    Petzold K, Koschella A, Klemm D, Heublein B (2003) Silylation of cellulose and starch—selectivity, structure analysis, and subsequent reactions. Cellulose 10:251–269CrossRefGoogle Scholar
  105. 105.
    Mormann W (2003) Silylation of cellulose with hexamethyldisilazane in ammonia—activation, catalysis, mechanism, properties. Cellulose 10:271–281CrossRefGoogle Scholar
  106. 106.
    Mormann W, Demeter J (2000) Controlled desilylation of cellulose with stoichiometric amounts of water in the presence of ammonia. Macromol Chem Phys 201:1963–1968CrossRefGoogle Scholar
  107. 107.
    Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13:519–535CrossRefGoogle Scholar
  108. 108.
    Mohan T, Kargl R, Doliška A, Ehmann HMA, Ribitsch V, Stana-Kleinschek K (2013) Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydr Polym 93:191–198CrossRefGoogle Scholar
  109. 109.
    Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Cellulose model surfaces—simplified preparation by spin coating and characterization by x-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy. Langmuir 19:5735–5741CrossRefGoogle Scholar
  110. 110.
    Schaub M, Wenz G, Wegner G, Stein A, Klemm D (1993) Ultrathin films of cellulose on silicon wafers. Adv Mater 5:919–922CrossRefGoogle Scholar
  111. 111.
    Niinivaara E, Kontturi E (2014) 2D dendritic fractal patterns from an amphiphilic polysaccharide. SoftMatter 10:1801–1805Google Scholar
  112. 112.
    Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392CrossRefGoogle Scholar
  113. 113.
    Wondraczek H, Petzold-Welcke K, Fardim P, Heinze (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760Google Scholar
  114. 114.
    Wagenknecht W, Nehls I, Stein A, Klemm D, Philipp B (1992) Synthesis and substituent distribution of Na-cellulose sulphates via trimethylsilyl cellulose as intermediate. Acta Polym 43:266–269CrossRefGoogle Scholar
  115. 115.
    Richter A, Klemm D (2003) Regioselective sulfation of trimethylsilyl cellulose using different SO3-complexes. Cellulose 10:133–138CrossRefGoogle Scholar
  116. 116.
    Liebert T, Heinze T (1998) Synthesis path versus distribution of functional groups in cellulose ethers. Macromol Symp 130:271–283CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Heinze
    • 1
  • Omar A. El Seoud
    • 2
  • Andreas Koschella
    • 1
  1. 1.Institut für Organische Chemie und Makromolekulare ChemieUniversität JenaJenaGermany
  2. 2.Institute of ChemistryUniversity of São PauloSão PauloBrazil

Personalised recommendations