Skip to main content

Production and Characteristics of Cellulose from Different Sources

  • Chapter
  • First Online:
Cellulose Derivatives

Abstract

Cellulose constitutes the most abundant renewable polymer resource available world-wide. It has been estimated that by photosynthesis, 1011 − 1012 t are synthesized annually in a rather pure form, for example in the seed hairs of the cotton plant, but mostly cellulose is combined with lignin and other polysaccharides (hemicelluloses) in the cell wall of woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon

    Google Scholar 

  2. Hon DNS (1996) Chemical modification of lignocellulosic materials. Marcel Dekker Inc, New York, Basel, Hong Kong

    Google Scholar 

  3. Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 207:57–126

    Article  CAS  Google Scholar 

  4. Qu T, Guo W, Shen L, Xiao J, Zhao K (2011) Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433

    Article  CAS  Google Scholar 

  5. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245–250

    Article  CAS  Google Scholar 

  6. http://en.wikipedia.org/wiki/Bagasse

  7. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  8. The Clean Washington Center (1997) Wheat straw as a paper fiber source, Washington. http://www.cwc.org/paper/pa971rpt.pdf

  9. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  10. Tarchevsky JA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, Heidelberg

    Book  Google Scholar 

  11. Nakatsubo F, Kamitakahara H, Hori M (1996) Cationic ring-opening polymerization of 3,6-di-O-benzyl-alpha-D-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J Am Chem Soc 118:1677–1681

    Article  CAS  Google Scholar 

  12. Nishimura T, Takano T, Nakatsubo F, Murakami K (1993) Synthetic studies of cellulose. 10. Selection of suitable starting materials for the convergent synthesis of cello-oligosaccharides. Mokuzai Gakkaishi 39:40–47

    CAS  Google Scholar 

  13. Kamitakahara H, Koschella A, Mikawa Y, Nakatsubo F, Heinze T, Klemm D (2008) Synthesis and characterization of 2,6-di-O-methyl celluloses both from natural and synthetic celluloses. Macromol Biosci 8:690–700

    Article  CAS  Google Scholar 

  14. Kamitakahara H, Nakatsubo F, Klemm D (2006) Block co-oligomers of tri-O-methylated and unmodified cello-oligosaccharides as model compounds for methylcellulose and its dissolution/gelation behaviour. Cellulose 13:375–392

    Article  CAS  Google Scholar 

  15. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S (1991) Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc 113:3079–3084

    Article  CAS  Google Scholar 

  16. Kobayashi S, Shoda S, Lee J, Okuda K, Brown RM Jr, Kuga S (1994) Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron-microscopy. Macromol Chem Phys 195:1319–1326

    Article  CAS  Google Scholar 

  17. Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Issues, National Research Council (1994) Hierarchical structures in biology as a guide for new materials technology. National Academy Press, Washington, DC

    Google Scholar 

  18. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  19. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides, structure of polysaccharides. Springer, Berlin

    Google Scholar 

  20. Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press, Cambridge. ISBN 012647480X

    Google Scholar 

  21. Sixta H (2006) Introduction. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 3–19

    Chapter  Google Scholar 

  22. Fink H-P, Walenta E (1994) X-ray diffraction investigations of cellulose supramolecular structure at processing. Papier (Bingen, Germany) 48:739–742

    Google Scholar 

  23. Toland J, Galasso L, Lees D, Rodden G (2002) Pulp Paper International, Paperloop, p 5

    Google Scholar 

  24. Sixta H (2006) Sulfite chemical pulping. In: Sixta H (ed) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, pp 392–510

    Chapter  Google Scholar 

  25. Sixta H (2006) Handbook of pulp, vol 1. Wiley-VCH, Weinheim, p 325

    Book  Google Scholar 

  26. Berzings V, Tasmanm JE (1957) The relationship of the kappa number of the lignin content of pulp materials. Pulp Pap Can 9:154–158

    Google Scholar 

  27. Bremer Baumwollbörse (2008) “Cotton School”, Produktinformationen zur Baumwolle

    Google Scholar 

  28. Temming H, Grunert H, Huckfeldt H (1973) Temming linters—Technical information on cotton cellulose. English translation of the 2nd revised German edition (1972), Peter Temming AG, Glückstadt; Bremer Baumwollbörse, “Cotton School”, Produktinformationen zur Baumwolle, 2008

    Google Scholar 

  29. Rafiq Chaudhry M, Guitchounts A (2003) International Cotton Advisory Committee, Cotton Facts, Technical Paper No. 25, ISBN 0-9704918-3-2

    Google Scholar 

  30. Bremer Baumwollbörse, Bremen Cotton Report No. 33/34, August 29, 2008, pp 8–9

    Google Scholar 

  31. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53

    Article  CAS  Google Scholar 

  32. Carpenter F (1967) Evaluation of the fibrosampler and the digital fibrograph for sampling cotton fibers and measuring length characteristics (Marketing research report). Agricultural Research Service, U.S. Department of Agriculture, ASIN: B0006RFSGI

    Google Scholar 

  33. Chandra M (1998) Use of non-wood plant fibers for pulp and paper industry in Asia: potential in China. Master’s degree thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

    Google Scholar 

  34. McNutt JA, Rennel J (1997) The future of fiber in tomorrow’s world. Pulp Pap Int 39:34–36

    Google Scholar 

  35. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584

    Article  CAS  Google Scholar 

  36. http://www.environment.gov.au/atmosphere/airquality/publications/biomass.html

  37. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  38. http://www.xmarks.com/site/www.indiansugar.com/briefings/wsm.htm

  39. http://ipmworld.umn.edu/chapters/meagher.htm

  40. Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204

    Article  CAS  Google Scholar 

  41. Van Nguu N (2000) Issues and opportunities of wide adoption of hybrid rice outside china, with emphasis on south and southeast Asia. FAO Rice Information, Vol. 2, Chapter I

    Google Scholar 

  42. Agblevor FA, Ibrahim MM, El-Zawawy WK (2007) Coupled acid and enzyme mediated production of microcrystalline cellulose from corn cob and cotton gin waste. Cellulose 14:247–256

    Article  CAS  Google Scholar 

  43. Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532

    Article  CAS  Google Scholar 

  44. Ibrahim M, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 5:397–418

    CAS  Google Scholar 

  45. Chen J, Yan S, Ruan J (1996) A study on the preparation, structure and properties of microcrystalline cellulose. J Macromol Sci Part A Pure Appl Chem A33:1851–1862

    CAS  Google Scholar 

  46. Selim IZ, Mansour OY, Mohamed SA (1996) Physical characterization of pulps. II. Rice straw and bagasse pulps bleached by nonconventional two-stage hydrogen peroxide method and paper sheet making. Polym-Plast Technol Eng 35:649–667

    Article  CAS  Google Scholar 

  47. Moniruzzama M (1996) Effect of steam explosion on the physicochemical properties and enzymic saccharification of rice straw. Appl Biochem Biotechnol 59:283–297

    Article  Google Scholar 

  48. Lim SK, Son T-W, Lee D-W, Park BK, Cho KM (2001) Novel regenerated cellulose fibers from rice straw. J Appl Polym Sci 82:1705–1708

    Article  CAS  Google Scholar 

  49. Sun JX, Xu F, Geng ZC, Sun XF, Sun RC (2005) Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. J Appl Polym Sci 97:322–335

    Article  CAS  Google Scholar 

  50. Biswas A, Saha BC, Lawton JW, Shogren RL, Willett JL (2006) Process for obtaining cellulose acetate from agricultural by-products. Carbohydr Polym 64:134–137

    Article  CAS  Google Scholar 

  51. El-Sakhawy M, Hassan ML (2007) Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10

    Article  CAS  Google Scholar 

  52. He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22:2775–2781

    Article  CAS  Google Scholar 

  53. Abdel-Mohdy FA, Abdel-Halim ES, Abu-Ayana YM, El-Sawy SM (2009) Rice straw as a new resource for some beneficial uses. Carbohydr Polym 75:44–51

    Article  CAS  Google Scholar 

  54. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2010) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 101:4446–4455

    Article  CAS  Google Scholar 

  55. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials Part II: Physicochemical properties. Carbohydr Polym 83:676–687

    Article  CAS  Google Scholar 

  56. Chen HT, Funaoka M, Lai YZ (1998) Characteristics of bagasse in situ and in alkaline delignification. Holzforschung 52:635–639

    Article  CAS  Google Scholar 

  57. Rajini R, Venkateswarlu U, Rose C, Sastry TP (2001) Studies on the composites of cellulose triacetate (prepared from sugar cane pulp) and gelatin. J Appl Polym Sci 82:847–853

    Article  CAS  Google Scholar 

  58. Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304

    Article  Google Scholar 

  59. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  60. Abou-Yousef H, El-Sakhawy M, Kamel S (2005) Multi-stage bagasse pulping by using alkali/Caro’s acid treatment. Ind Crops Prod 21:337–341

    Article  CAS  Google Scholar 

  61. Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugarcane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50:221–225

    Article  CAS  Google Scholar 

  62. Liu C-F, Ren J-L, Xu F, Liu J-J, Sun J-X, Sun R-C (2006) Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem 54:5742–5748

    Article  CAS  Google Scholar 

  63. Liu CF, Sun RC, Zhang AP, Ren JL (2007) Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr Polym 68:17–25

    Article  CAS  Google Scholar 

  64. Ruzene DS, Silva DP, Vicente AA, Teixeira JA, de Amorim MTP, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:217–226

    Article  CAS  Google Scholar 

  65. Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956

    Article  CAS  Google Scholar 

  66. Papatheofanous MG, Billa E, Koullas DP, Monties B, Kuokios EG (1995) Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54:305–310

    Article  CAS  Google Scholar 

  67. Sun X-F, Sun R-C, Su Y, Sun J-X (2004) Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem 52:839–847

    Article  CAS  Google Scholar 

  68. Coutts RSP, Warden PG (1992) Sisal pulp reinforced cement mortar. Cem Concr Composites 14:17–21

    Article  CAS  Google Scholar 

  69. Savastano H Jr, Warden PG, Coutts RSP (2000) Brazilian waste fibers as reinforcement for cement-based composites. Cem Concr Composites 22:379–384

    Article  CAS  Google Scholar 

  70. Savastano H Jr, Warden PG, Coutts RSP (2004) Evaluation of pulps from natural fibrous material for use as reinforcement in cement product. Mater Manuf Processes 19:963–978

    Article  CAS  Google Scholar 

  71. Morán JI, Alvarez VA, Cyras VP, Vásquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  72. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411

    Article  CAS  Google Scholar 

  73. Hammett AL, Youngs RL, Sun X, Chandra M (2001) Non-wood fiber as an alternative to wood fiber in china’s pulp and paper industry. Holzforschung 55:219–224

    Article  CAS  Google Scholar 

  74. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  75. Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping: methods and pulp properties. Biomass 13:45–65

    Article  CAS  Google Scholar 

  76. Sixta H, Harms H, Dapia S, Parajo JC, Puls J, Saake B, Fink H-P, Roeder T (2004) Evaluation of new organosolv dissolving pulps. Part I: preparation, analytical characterization and viscose processability. Cellulose 11:73–83

    Article  CAS  Google Scholar 

  77. Focher B, Marzetti A, Crescenzi V (eds) (1991) Steam explosion techniques fundamentals and applications. Gordon and Breach Publishers, Philadelphia

    Google Scholar 

  78. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922

    Article  CAS  Google Scholar 

  79. Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321

    Article  CAS  Google Scholar 

  80. Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237

    Article  CAS  Google Scholar 

  81. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  82. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  83. Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67

    Article  CAS  Google Scholar 

  84. Cannon RE, Anderson SM (1991) Biogenesis of Bacterial Cellulose. Crit Rev Microbiol 17:435–447

    Article  CAS  Google Scholar 

  85. Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    Article  CAS  Google Scholar 

  86. Brown RM, Willison ZH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569

    Article  CAS  Google Scholar 

  87. Zaar K (1977) Biogenesis of cellulose by Acetobacter xylinum. Cytobiologie 16:1–15

    CAS  Google Scholar 

  88. Klemm D, Schumann D, Kramer F, Heßler N, Koth D, Sultanova B (2009) Nanocellulose materials—Different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  89. Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61:219–224

    Article  CAS  Google Scholar 

  90. VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  91. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143

    Article  CAS  Google Scholar 

  92. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  93. Ring DF, Nashed W, Dow T (1984) Liquid loaded pad for medical applications. GB 2131701 A CAN 101:149803

    Google Scholar 

  94. Serafica C, Mormino R, Oster GA, Lentz KE, Koehler P (2006) Mikrobieller Cellulose-Wundverband zur Behandlung chronischer Wunden. DE 60203264

    Google Scholar 

  95. Frankenfeld K, Hornung M, Lindner B, Ludwig M, Mülverstedt A, Schmauder H-P (2001) Procedure for the production of specific molded shapes or layers from bacterial cellulose. DE 10022751 A1 CAN 135:256211

    Google Scholar 

  96. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  97. Oster G, Lentz K, Koehler K, Hoon R, Serafica G, Mormino R (2002) Solvent dehydrated microbially-derived cellulose for in vivo implantation. US 2002107223 A1 CAN 137:145652

    Google Scholar 

  98. Damien CJ, Oster GA, Beam HA (2005) Thermally modified microbial-derived cellulose for in vivo implantation. US 2005042250 A1 CAN 142:246277

    Google Scholar 

  99. Beam H, Serafica G, Damien C, Wright FS (2007) Implantable microbial cellulose materials for various medical applications. WO 2007064772 A2 CAN 147:39244

    Google Scholar 

  100. Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Production of hollow cellulose produced by microorganisms for artificial blood vessels. EP 0396344, CAN 114:235093

    Google Scholar 

  101. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  102. Dos Anjos B, Novaes AB Jr, Meffert R, Barboza EP (1998) Clinical comparison of cellulose and expanded polytetrafluoroethylene membranes in the treatment of class II furcations in mandibular molars with 6-month re-entry. J Periodontol 69:454–459

    Article  Google Scholar 

  103. Macedo NL, Matuda FS, Macedo LGS, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400

    Google Scholar 

  104. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res 76A:431–438

    Article  CAS  Google Scholar 

  105. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  Google Scholar 

  106. Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107–114

    Article  CAS  Google Scholar 

  107. Uryu M, Kurihara N (1993) Acoustic diaphragm and method producing same. US 5274199

    Google Scholar 

  108. Hwang JU, Park SH, Pyun YR, Yang YG (1999) Speaker vibration plate containing microbial cellulose al principal ingredient KO 100246726 B1

    Google Scholar 

  109. Stephens RS, Westland JA, Neogi AN (1990) Production of cholesterol-absorbing bacterial cellulose for use as dietary fiber. US 4960763 A, CAN 114:60730

    Google Scholar 

  110. Tabuchi M, Baba Y (2005) Design for DNA separation medium using bacterial cellulose fibrils. Anal Chem 77:7090–7093

    Article  CAS  Google Scholar 

  111. Tabuchi M, Kobayashi K, Fujimoto M, Baba Y (2005) Bio-sensing on a chip with compact discs and nanofibers. Lab Chip 5:1412–1415

    Article  CAS  Google Scholar 

  112. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256

    Article  CAS  Google Scholar 

  113. Goelzer FDE, Faria-Tischer PCS, Vitorino JC, Sierakowski M-R, Tischer CA (2009) Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater Sci Eng C 29:546–551

    Article  CAS  Google Scholar 

  114. Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296

    Article  CAS  Google Scholar 

  115. Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91–93:503–513

    Article  Google Scholar 

  116. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  117. Battista OA (1985) Cellulose, microcrystalline. In: Kroschwitz JI (ed) Encycl Polym Sci Eng 3:86–90

    Google Scholar 

  118. Battista OA, Smith PA (1962) Microcrystalline cellulose—oldest polymer finds new industrial uses. Ind Eng Chem 54:20–29

    Article  CAS  Google Scholar 

  119. Steege HH, Philipp B (1974) Characterization and use of microcrystalline cellulose. Zellst Pap 23:68–73

    CAS  Google Scholar 

  120. Engelhardt J (1995) General introduction on cellulose: sources, industrial derivatives and commercial application of cellulose. Carbohydr Eur 12:5–14

    Google Scholar 

  121. Fleming K, Gray D, Prasannan S, Matthews S (2000) Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225

    Article  CAS  Google Scholar 

  122. Meiland M, Liebert T, Heinze T (2011) Tailoring the degree of polymerization of low molecular weight cellulose. Macromol Mater Eng 296:802–809

    Article  CAS  Google Scholar 

  123. Meiland M, Liebert T, Baumgaertel A, Schubert US, Heinze T (2011) Alkyl β-d-cellulosides: non-reducing cellulose mimics. Cellulose 18:1585–1598

    Article  CAS  Google Scholar 

  124. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  125. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  Google Scholar 

  126. Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  127. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941

    Article  CAS  Google Scholar 

  128. Angellier H, Putaux J-L, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp 221:95–104

    Article  CAS  Google Scholar 

  129. Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292

    Article  CAS  Google Scholar 

  130. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  131. Odijk T, Lekkerkerker HNW (1985) Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules. J Phys Chem 89:2090–2096

    Article  CAS  Google Scholar 

  132. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  133. Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134

    Article  CAS  Google Scholar 

  134. Revol JF, Godbout L, Gray DGJ (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24:146–149

    CAS  Google Scholar 

  135. De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  136. Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small-angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  137. Marchessault RH, Morehead FF, Koch MJ (1961) Hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  138. Onogi S, Asada T (1980) Rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology. Plenum, New York

    Google Scholar 

  139. Orts WJ, Godbout L, Marchessault RH, Revol JF (1995) Shear-induced alignment of liquid-crystalline suspensions of cellulose microfibrils. ACS Symp Ser 597:335–348

    Article  CAS  Google Scholar 

  140. Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  141. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  142. Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113

    Article  CAS  Google Scholar 

  143. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  144. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  145. Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    Article  CAS  Google Scholar 

  146. Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401

    Article  CAS  Google Scholar 

  147. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites 1. Structural analysis. Macromolecules 33:8344–8353

    Article  Google Scholar 

  148. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  149. Chazeau L, Cavaillé JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behaviour. J Polym Sci Part B: Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  150. Azizi Samir AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  151. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  152. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  153. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  154. Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875

    Article  CAS  Google Scholar 

  155. Samir MASA, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  CAS  Google Scholar 

  156. Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888

    Article  CAS  Google Scholar 

  157. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Article  CAS  Google Scholar 

  158. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  Google Scholar 

  159. Roman M, Dong S, Hirani A, Lee YW (2009) Cellulose nanocrystals for drug delivery. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials: performance by design. ACS Symposium Series. American Chemical Society, Washington DC, pp 81–91

    Google Scholar 

  160. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

  161. Turbak AF, Synder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  162. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  163. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112

    Article  CAS  Google Scholar 

  164. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  165. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  166. Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112/1-073112/2

    Google Scholar 

  167. Wagberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  CAS  Google Scholar 

  168. Werner O, Persson L, Nolte M, Fery A, Wagberg L (2008) Patterning of surfaces with nanosized cellulosic fibrils using microcontact printing and a lift-off technique. Soft Matter 4:1158–1160

    Article  CAS  Google Scholar 

  169. Turbak AF, Snyder FW, Sandberg KR (1982) Suspensions containing microfibrillated cellulose EP19810108847

    Google Scholar 

  170. Dinand E, Vignon MR (2001) Isolation and NMR characterization of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. Carbohydr Res 330:285–288

    Article  CAS  Google Scholar 

  171. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  172. Cavaille J-Y, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials. US6117545

    Google Scholar 

  173. Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2000) Derivatized microfibrillar polysaccharides, their formation and use in dispersions. US6602994

    Google Scholar 

  174. Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene composites. Polym Eng Sci 33:343–346

    Article  CAS  Google Scholar 

  175. Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Annex

Annex

See Table 1.8.

Table 1.8 Typical treatments of agricultural residues and sisal and characteristics of the pulps obtaineda,b,c,d

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinze, T., El Seoud, O.A., Koschella, A. (2018). Production and Characteristics of Cellulose from Different Sources. In: Cellulose Derivatives. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-73168-1_1

Download citation

Publish with us

Policies and ethics