Incompressible Homogeneous Anisotropic Turbulence: Pure Shear

  • Pierre Sagaut
  • Claude Cambon


This chapter is devoted to the pure shear case. Main results of Reynolds Stress Models are given, and the specificity of Rapid Distortion Theory is investigated for transient growth, in terms of poloidal/ toroidal modal decomposition. The scale-by-scale return to isotropy is addressed, with the support of the simplified model in terms of spherically averaged descriptors. New DNS results are exploited to show a quasi-balance between spectral transfer and dissipation transfer, for largest scales, at Reynolds numbers much smaller than those in decaying isotropic turbulence. Finally, a discussion of regeneration cycles and self-sustaining process is given.


  1. Brasseur, J.G., Wang, Q.: Structural evolution of intermittency and anisotropy at different scales analyzed using three-dimensional wavelet transforms. Phys. Fluids 4, 2538–2554 (1992)ADSCrossRefzbMATHGoogle Scholar
  2. Brethouwer, G.: The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation. J. Fluid Mech. 542, 305–342 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. Briard, A., Gomez, T., Mons, V., Sagaut, P.: Decay and growth laws in homogeneous shear turbulence. J. Turbul. 17(7), 699–726 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. Briard, A., Iyer, M., Gomez, T.: Anisotropic spectral modeling for unstably stratified homogeneous turbulence. Phys. Rev. Fluids 2, 044604 (2017)ADSCrossRefGoogle Scholar
  5. Cambon, C.: Contribution to single and double point modelling of homogeneous turbulence, Annual Research Briefs, Stanford University and NASA Ames, Center for Turbulence Research (1990)Google Scholar
  6. Cambon, C., Jeandel, D., Mathieu, M.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)ADSCrossRefzbMATHGoogle Scholar
  7. Cardesa, J.I., Vela-Martin, A., Dong, S., Jiménez, J.: The temporal evolution of the energy flux across scales in homogeneous turbulence. Phys. Fluids 27, 111702 (2015)ADSCrossRefGoogle Scholar
  8. Chagelishvili, G.D., Zahn, J.P., Tevzadze, A.G., Lominadze, J.G.: On hydrodynamic shear turbulence in Keplerian discs: via transient growth to bypass transition. A & A 402, 401–407 (2003)ADSCrossRefGoogle Scholar
  9. Clark, T.T., Zemach, C.: A spectral model applied to homogeneous turbulence. Phys. Fluids 7, 1674–1694 (1995)Google Scholar
  10. Corrsin, S.: On local isotropy in turbulent shear flow. NACA RM 58B11 (1958)Google Scholar
  11. De Mare, M., Mann, J.: On the space-time structure of sheared turbulence. Boundary-Layer Meteorol. 160, 453–474 (2016)ADSCrossRefGoogle Scholar
  12. De Souza, F.A., Nguyen, V.D., Tavoularis, S.: The structure of highly sheared turbulence. J. Fluid Mech. 303, 155–167 (1995)ADSCrossRefGoogle Scholar
  13. Ferchichi, M., Tavoularis, S.: Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids 12, 2942–2953 (2000)ADSCrossRefzbMATHGoogle Scholar
  14. Ferchichi, M., Tavoularis, S.: Scalar probability density function and fine structure in uniformly sheared turbulence. J. Fluid Mech. 461, 155–182 (2002)Google Scholar
  15. Garg, S., Warhaft, Z.: On the small scale structure of simple shear flow. Phys. Fluids 10, 662–673 (1998)ADSCrossRefGoogle Scholar
  16. George, W.K., Beuther, P.D., Arndt, R.E.A.: Pressure spectra in turbulent shear flows. J. Fluid Mech. 148, 155–191 (1984)ADSCrossRefzbMATHGoogle Scholar
  17. George, W.K., Gibson, M.M.: The self-preservation of homogeneous shear flow turbulence. Exp. Fluids 13, 229–238 (1992)CrossRefGoogle Scholar
  18. Gualtieri, P., Casciola, C.M., Benzi, R., Amati, G., Piva, R.: Scaling laws and intermittency in homogeneous shear flows. Phys. Fluids 14, 583–596 (2002)ADSCrossRefzbMATHGoogle Scholar
  19. Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)ADSCrossRefzbMATHGoogle Scholar
  20. Hanazaki, H., Hunt, J.C.R.: Linear processes in unsteady stably stratified shear turbulence with mean shear. J. Fluid Mech. 507, 1–42 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Isaza, J.C., Collins, L.R.: On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech. 367, 213–239 (2009)Google Scholar
  22. Ishihara, T., Yoshida, K., Kaneda, Y.: Anisotropic velocity correlation spectrum at small scale in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88(15), 154501 (2002)ADSCrossRefGoogle Scholar
  23. Jimenez, J., Kawahara, G., Simens, M.P., Nagata, M., Shiba, M.: Characterization of near-wall turbulence in terms of equilibrium and bursting solutions. Phys. Fluids 17, 015105 (2005)ADSCrossRefzbMATHGoogle Scholar
  24. Iida, O., Iwatsuki, M., Nagano, Y.: Vortical turbulence structure and transport mechanism in a homogeneous shear flow. Phys. Fluids 12, 2895–2905 (2000)ADSCrossRefzbMATHGoogle Scholar
  25. Kaneda, Y.: Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A 5(11), 2835–2845 (1993)ADSCrossRefzbMATHGoogle Scholar
  26. Kaneda, Y., Ishihara, T., Gotoh, K.: Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence. Phys. Fluids 11, 2154–2166 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Kida, S., Tanaka, M.: Dynamics of vortical structures in a homogeneous shear flow. J. Fluid Mech. 274, 43–68 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Lee, M.J., Kim, J., Moin, P.: Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583 (1990)ADSCrossRefGoogle Scholar
  29. Lumley, J.L.: Similarity and the turbulent energy spectrum. Phys. Fluids 10(4), 855–858 (1967)ADSCrossRefGoogle Scholar
  30. Mann, J.: The spatial structure of neutral surface-layer turbulence. J. Fluid Mech. 273, 141–168 (1994)ADSCrossRefzbMATHGoogle Scholar
  31. Mons, V., Cambon, C., Sagaut, P.: A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147–182 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. Nazarenko, S.V., Zakharov, V.E.: The role of he convective modes and sheared variables in the Hamiltonian-dynamics of uniform-shear-flow perturbations. Phys. Lett. A 191(5–6), 403–408 (1994)ADSCrossRefGoogle Scholar
  33. Nickels, T.B., Marusic, I., Hafez, S., Chong, M.S.: Evidence of a $k^{-1}$ law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501 (2005)ADSCrossRefGoogle Scholar
  34. Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid. In: Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 27, pp. 9–68 (1909)Google Scholar
  35. Piquet, J.: Turbulent flows. Models and Physics, 2nd edn. Springer, Berlin (2001)Google Scholar
  36. Pumir, A.: Turbulence in homogeneous shear flows. Phys. Fluids 8, 3112–3127 (1996)ADSCrossRefzbMATHGoogle Scholar
  37. Pumir, A., Shraiman, B.I.: Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75(17), 3114–3117 (1995)ADSCrossRefGoogle Scholar
  38. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Technical Memorandum NASA-TM-81315 (1981)Google Scholar
  39. Rogers, M.: The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys. Fluids A 3(1), 144–154 (1991)ADSCrossRefzbMATHGoogle Scholar
  40. Rohr, J.J., Itsweire, E.C., Helland, K.N., Van Atta, C.W.: An investigation of the growth of turbulence in a uniform-mean-shear flow. J. Fluid Mech. 187, 1–33 (1988)ADSCrossRefzbMATHGoogle Scholar
  41. Salhi, A., Cambon, C.: An analysis of rotating shear flow using linear theory and DNS and LES results. J. Fluid Mech. 347, 171–195 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. Salhi, A., Jacobitz, F., Schneider, K., Cambon, C.: Nonlinear dynamics and anisotropic structure of rotating sheared turbulence. Phys. Rev. E 89, 013020 (2014)ADSCrossRefGoogle Scholar
  43. Schumacher, J.: Relation between shear parameter and reynolds number in statistically stationary turbulent shear flows. Phys. Fluids 16, 3094–3102 (2004)Google Scholar
  44. Sekimoto, Dong, Jiménez.: DNS of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28, 035101 (2016)Google Scholar
  45. Shirani, E., Ferziger, J.H., Reynolds, W.C.: Mixing of a passive scalar in isotropic and sheared homogeneous turbulence. Tech. Rep. NASA-CR-164938 Tf-15. Stanford (CA): Department of Mechanical Engineering, Stanford University (1981)Google Scholar
  46. Sukheswalla, P., Vaithianathan, T., Collins, L.R.: Simulation of homogeneous turbulent shear flows at higher reynolds numbers: numerical challenges and a remedy. J. Turbulence 14, 60–97 (2013)Google Scholar
  47. Tavoularis, S., Corrsin, S. J.: Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 10, 311–347 (1981)Google Scholar
  48. Tavoularis, S., Karnik, U.: Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457–478 (1989)Google Scholar
  49. Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)Google Scholar
  50. Waleffe, F.: On a self-sustaining process in shear flows. Phys. Fluids 9, 883–900 (1996)ADSCrossRefGoogle Scholar
  51. Waleffe, F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517–1534 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. Weinstock, J.: Analytical theory of homogeneous shear turbulence. J. Fluid Mech. 727, 256–281 (2013)ADSMathSciNetzbMATHGoogle Scholar
  53. Wilczek, M., Stevens, R., Meneveau, C.: Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769(1–11), R1 (2015)ADSCrossRefGoogle Scholar
  54. Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations