Skip to main content

Incompressible Homogeneous Anisotropic Turbulence: With Strain

  • Chapter
  • First Online:
Homogeneous Turbulence Dynamics
  • 2024 Accesses

Abstract

This chapter deals with effects of mean strain, with a direct impact on energy production. Various experimental facilities are surveyed. In addition to the pure strain (irrotational mean flows, symmetric mean velocity gradient matrix), the case of more general mean flows is addressed. The essentials of Rapid Distortion Theory with mean-flow-advection are given, after a brief survey of Reynolds Stress Models. Governing equations for second-order statistics are compacted under generalized Lin equations, and a recent model derived from anisotropic EDQNM is rendered more tractable in terms of spherically averaged descriptors. Some typical results are reported and compared to experiments. The return to isotropy is investigated, both in terms of a threshold scale in a scale-by-scale analysis, and in term of the temporal relaxation of anisotropy indicators when the mean velocity gradient is suppressed. Finally, the experimental investigation near the stagnation point in a von Karman flow with exactly co-rotating discs, illustrates the recovery of the concepts of homogeneous anisotropic turbulence in such a flow, with careful measurements of mean velocity gradients and Reynolds stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One has to keep in mind that essentially the same equations can be used in more realistic flow cases, following Hunt and coworkers, and Lifschitz and Hameiri (1991).

  2. 2.

    This is a general solution for any Eikonal-type equation , see Eq. (8.26).

References

  • Batchelor, G.K., Proudman, I.: The effect of rapid distortion in a fluid in turbulent motion. Q. J. Mech. Appl. Maths 2, 7–83 (1954)

    MATH  Google Scholar 

  • Bayly, B.J.: Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57(17), 2160–2163 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Bayly, B.J., Holm, D.D., Lifschitz, : Three-dimensional stability of elliptical vortex columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354, 895–926 (1996)

    Google Scholar 

  • Cambon, C.: Etude spectrale d’un champ turbulent incompressible soumis à des effets couplés de déformation et rotation imposés extérieurement. Université Lyon I, France, Thèse de Doctorat d’Etat (1982)

    Google Scholar 

  • Cambon, C., Teissèdre, C., Jeandel, D.: Etude d’ effets couplés de rotation et de déformation sur une turbulence homogène. Journal de Mécanique Théorique et Appliquée 5, 629 (1985)

    ADS  MATH  Google Scholar 

  • Cambon, C., Mansour, N.N., Godeferd, F.S.: Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303–332 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cambon, C., Jeandel, D., Mathieu, J.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)

    Article  ADS  MATH  Google Scholar 

  • Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31, 1–53 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Cambon, C., Rubinstein, R.: Anisotropic developments for homogeneous shear flows. Phys. Fluids 18, 085106 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Champagne, F.H., Harris, V.G., Corrsin, S.J.: Experiments on nearly homogeneous turbulent shear flows. J. Fluid Mech. 41, 81–139 (1970)

    Google Scholar 

  • Chen, J., Meneveau, C., Katz, J.: Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle. J. Fluid Mech. 562, 123–150 (2006)

    Article  ADS  MATH  Google Scholar 

  • Corrsin, S.: On local isotropy in turbulent shear flow, NACA RM 58B11 (1958)

    Google Scholar 

  • Courseau, P., Loiseau, M.: Contribution à l’ analyse de la turbulence homogène anisotrope. Journal de Mécanique 17(2) (1978)

    Google Scholar 

  • Craik, A.D.D., Criminale, W.O.: Evolution of wavelike disturbances in shear flows: a class of exact solutions of Navier–Stokes equations. Proc. R. Soc. Lond. Ser. A 406, 13–26 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gence, J.-N., Mathieu, J.: On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech. 93, 501–513 (1979)

    Article  ADS  Google Scholar 

  • Gence, J.N., Mathieu, J.: The return to isotropy of an homogeneous turbulence having been submitted to two successive plane strains. J. Fluid Mech.101, 555–566 (1980)

    Google Scholar 

  • Goldstein, M.E.: Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89(3), 433–468 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hadzic, I., Hanjalic, K., Laurence, D.: Modeling the response of turbulence subjected to cyclic irrotational strain. Phys. Fluid 13(6), 1739–1747 (2001)

    Article  ADS  MATH  Google Scholar 

  • Hunt, J.C.R.: A theory of turbulent flow around two-dimensional bluff bodies. J. Fluid Mech. 61, 625–706 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hunt, J.C.R., Carruthers, D.J.: Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497–532 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ishihara, T., Yoshida, K., Kaneda, Y.: Anisotropic velocity correlation spectrum at small scale in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88(15), 154501 (2002)

    Article  ADS  Google Scholar 

  • Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J.: Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 1–52 (1990)

    Article  ADS  MATH  Google Scholar 

  • Kassinos, S.C., Reynolds, W.C., Rogers, M.M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kevlahan, N.K.R., Hunt, J.C.R.: Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech. 337, 333–364 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leblanc, S., Godeferd, F.S.: An illustration of the link between ribs and hyperbolic instability. Phys. Fluids 11(2), 497–499 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leclaire, B. (2006). Etude théorique et expérimentale d’ un écoulement tournant dans une conduite, Ph. D. thesis, Thèse de l’ Ecole Polytechnique, 21 Dec 2006

    Google Scholar 

  • Lee, M.J.: Distortion of homogeneous turbulence by axisymmetric strain and dilatation. Phys. Fluids A 1(9), 1541–1557 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leuchter, O., Benoit, J. -P., Cambon, C.: . Homogeneous turbulence subjected to rotation-dominated plane distortion. Turb. Shear Flow 4, Delft, The Netherlands (1992)

    Google Scholar 

  • Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids A 3, 2644–2641 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Machicoane, N., Bonaventure, J., Volk, R.: Melting dynamics of large ice balls in a turbulent swirling flow. Phys. Fluids 25, 12 (2013)

    Article  Google Scholar 

  • Maréchal, P.: Contribution à l’ étude de la déformation plane de la turbulence. Université de Grenoble, France, Doctorat es Sciences (1970)

    Google Scholar 

  • Moffatt, H.K.: Interaction of turbulence with strong wind shear. In: Yaglom, A.M., Tatarski, V.I. (eds.) Colloquium on Atmospheric Turbulence and Radio Wave Propagation, pp. 139–156. Nauka, Moscow (1967)

    Google Scholar 

  • Mons, V., Meldi, M., Sagaut, P.: Numerical investigation on the partial return to isotropy of freely decaying homogeneous axisymmetric turbulence. Phys. Fluids 26, 025110 (2014)

    Article  ADS  Google Scholar 

  • Mons, V., Cambon, C., Sagaut, P.: A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147–182 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nazarenko, S.V., Zakharov, V.E.: The role of he convective modes and sheared variables in the Hamiltonian-dynamics of uniform-shear-flow perturbations. Phys. Lett. A 191(5–6), 403–408 (1994)

    Article  ADS  Google Scholar 

  • Ribner, H.S.: Convection of a pattern of vorticity through a shock wave. Technical report 1164, NACA (1953)

    Google Scholar 

  • Rogers, M.M., Moin, P.: The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 33–66 (1987)

    Article  ADS  Google Scholar 

  • Rogers, M.: The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys. Fluids A 3(1), 144–154 (1991)

    Article  ADS  MATH  Google Scholar 

  • Rose, W.G.: Results of an attempt to generate a homogeneous turbulent shear flow. J. Fluid Mech. 25, 97–120 (1966)

    Article  ADS  Google Scholar 

  • Sreenivasan, K.R., Narasimha, R.: Rapid distortion theory of axisymmetric turbulence. J. Fluid Mech. 84(3), 497–516 (1978)

    Article  ADS  MATH  Google Scholar 

  • Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  • Tucker, H.J., Reynolds, A.J.: The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32, 657–673 (1968)

    Article  ADS  Google Scholar 

  • Yoshida, K., Ishihara, T., Kaneda, Y.: Anisotropic spectrum of homogeneous turbulent shear flow in a Lagrangian renormalized approximation. Phys. Fluids 15(8), 2385–2397 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Sagaut .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagaut, P., Cambon, C. (2018). Incompressible Homogeneous Anisotropic Turbulence: With Strain. In: Homogeneous Turbulence Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-73162-9_8

Download citation

Publish with us

Policies and ethics