Isotropic Turbulence with Coupled Microstructures. I: Visco-Elastic Turbulence

  • Pierre Sagaut
  • Claude Cambon


This chapter is devoted to the dynamics of isotropic turbulence in dilute polymer solutions. Governing equations associated to the very popular FENE-P rheological model are exhaustively discussed. The three main physical regimes are discussed in both physical and spectral space, along with associate kinetic and elastic energy cascades.


  1. Balkovsky, E., Fouxon, A., Lebedev, V.: Turbulence of polymer solutions. Phys. Rev. E 64, 056301 (2001)ADSMathSciNetCrossRefGoogle Scholar
  2. Berti, S., Bistagnino, A., Boffetta, G., Celani, A., Musacchio, S.: Small-scale statistics of viscoelastic turbulence. Europhys. Lett. 76, 63–69 (2006)ADSCrossRefGoogle Scholar
  3. Cai, W.H., Li, F.C., Zhang, H.N.: DNS study of decaying homogeneous isotropic turbulence with polymer additives. J. Fluid Mech. 665, 334–356 (2010)ADSCrossRefzbMATHGoogle Scholar
  4. Cai, W.H., Li, F.C., Zhang, H.N.: DNS study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence. Chin. Phys. B 20, 124702 (2011)ADSCrossRefGoogle Scholar
  5. Casciola, C.M., De Angelis, E.: Energy transfer in turbulent polymer solutions. J. Fluid Mech. 581, 419–436 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. De Angelis, E., Casciola, C.M., Benzi, R., Piva, R.: Homogeneous isotropic turbulence in dilute polymer solutions. J. Fluid Mech. 531, 1–10 (2005)ADSCrossRefzbMATHGoogle Scholar
  7. Dubief, Y., Terrapon, V.E., Soria, J.: On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817 (2013)ADSCrossRefGoogle Scholar
  8. Fouxon, A., Lebedev, V.: Spectra of turbulence in dilute polymer solutions. Phys. Fluids 15, 2060–2072 (2003)Google Scholar
  9. Groisman, A., Steinberg, V.: Elastic turbulence in a polymer solution flow. Nature 405(6872), 53–55 (2000)Google Scholar
  10. Horiuti, K., Matsumoto, K., Fujiwara, K.: Remarkable drag reduction in non-affine viscoelastic turbulent flows. Phys. Fluids 25, 015106 (2013)ADSCrossRefGoogle Scholar
  11. Jin, S., Collins, L.R.: Dynamics of dissolved polymer chains in isotropic turbulence. New J. Physics 9, 360 (2007)ADSCrossRefGoogle Scholar
  12. Li, F.C., Cai, W.H., Zhang, H.N., Wang, Y.: Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations. Chin. Phys. B 21, 114701 (2012)ADSCrossRefGoogle Scholar
  13. Liberzon, A., Guala, M., Kinzelbach, W., Tsinober, A.: On turbulent kinetic energy production and dissipation in dilute polymer solutions Phys. Fluids 18, 125101 (2006)ADSCrossRefzbMATHGoogle Scholar
  14. Lumley, J.L.: Turbulence in NonNewtonian fluids. Phys. Fluids 7, 335–337 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Ouellette, N.T., Xu, H., Bodenschatz, E.: Bulk turbulence in dilute polymer solutions. J. Fluid Mech. 629, 375–385 (2014)ADSCrossRefzbMATHGoogle Scholar
  16. Perlekar, P., Mitra, D., Pandit, R.: Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett. 97, 264501 (2006)ADSCrossRefGoogle Scholar
  17. Perlekar, P., Mitra, D., Pandit, R.: Direct Numerical Simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82, 066313 (2010)ADSCrossRefGoogle Scholar
  18. Sreenivasan, K., White, C.M.: The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J. Fluid Mech. 409, 149–164 (2000)ADSCrossRefzbMATHGoogle Scholar
  19. Valente, P.C., da Silva, C.B., Pinho, F.T.: The effect of viscoelasticity on the turbulent kinetic energy cascade. J. Fluid Mech. 760, 39–62 (2014)ADSCrossRefGoogle Scholar
  20. Valente, P.C., da Silva, C.B., Pinho, F.T.: Energy spectra in elasto-inertial turbulence. Phys. Fluids 28, 075108 (2016)ADSCrossRefGoogle Scholar
  21. Vincenzi, D., Perlekar, P., Biferale, L., Toschi, F.: Impact of the Peterlin approximation on polymer dynamics in turbulent flows. Phys. Rev. E 92, 053004 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. Vonlanthen, R., Monkewitz, P.A.: Grid turbulence in dilute polymer solutions: PEO in water. J. Fluid Mech. 730, 76–98 (2013)ADSCrossRefzbMATHGoogle Scholar
  23. Xi, H.D., Bodenschatz, E., Xu, H.: Elastic energy flux by flexible polymers in fluid turbulence. Phys. Rev. Lett. 111, 024501 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations