Advertisement

Canonical Isotropic Turbulence/Shock Interaction and Beyond

  • Pierre Sagaut
  • Claude Cambon
Chapter

Abstract

This chapter displays the most advanced theoretical and numerical results dealing with shock/turbulence interaction. Both the wrinckled and the broken shock regimes are discussed, along with extensions beyond the canonical interaction case: spherical blast waves and converging spherical shock waves interacting with turbulence, interaction of a shock with a turbulent binary mixture and interaction of a detonation wave with turbulence.

References

  1. Bhagatwala, A., Lele, S.K.: Interaction of a Taylor blast wave with isotropic turbulence (2012). Shock structure in shock-turbulence interaction. Phys. Fluids 23, 035103 (2011)Google Scholar
  2. Bhagatwala, A., Lele, S.K.: Interaction of a converging spherical shock wave with isotropic turbulence (2012). Shock structure in shock-turbulence interaction. Phys. Fluids 24, 085102 (2012)Google Scholar
  3. Donzis, D.A.: Shock structure in shock-turbulence interactions. Phys. Fluids 24, 126101 (2012a)ADSCrossRefGoogle Scholar
  4. Donzis, D.A.: Amplification factors in shock-turbulence interactions: effect of shock thickness. Phys. Fluids 24, 011705 (2012b)ADSCrossRefGoogle Scholar
  5. Dyakov, S.P.: On the stability of shock waves. Zh. Eksp. Teor. Fiz. 27, 288 (1954). At. Res. Agency Establ. AERE Lib./Trans. 648 (1956)Google Scholar
  6. Griffond, J.: Linear interaction analysis applied to a mixture of two perfect gases. Phys. Fluids 24, 115108 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. Griffond, J., Soulard, O., Souffland, D.: A turbulent mixing Reynolds stress model fitted to match linear interaction analysis prediction. Phys. Scr. 142, 014059 (2010)CrossRefGoogle Scholar
  8. Griffond, J., Soulard, O.: Evolution of axisymmetric weakly turbulent mixtures interacting with shock or rarefaction waves. Phys. Fluids 17, 086101 (2012)CrossRefGoogle Scholar
  9. Huete, C., Wouchuk, J.G., Canaud, B., Velikovich, A.L.: Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities. J. Fluid Mech. 700, 214–245 (2012a)ADSCrossRefzbMATHGoogle Scholar
  10. Huete, C., Wouchuk, J.G., Velikovich, A.L.: Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field. Phys. Rev. E 85, 026312 (2012b)ADSCrossRefGoogle Scholar
  11. Huete, C., Sanchez, A.L., Velikovich, A.L.: Theory of interactions of thin strong detonations with turbulent gases. Phys. Fluids 25, 076105 (2013)ADSCrossRefGoogle Scholar
  12. Huete, C., Sanchez, A.L., Velikovich, A.L.: Linear theory for the interaction of small-scale turbulence with overdriven detonations. Phys. Fluids 26, 116101 (2014)ADSCrossRefGoogle Scholar
  13. Huete, C., Jin, T., Martinez-Ruiz, D., Williams, F.A.: Reacting shock wave effects on isotropic turbulent flows. Linear Interaction Analysis and Direct Numerical Simulations. Private Communication (2016)Google Scholar
  14. Jacquin, L., Cambon, C., Blin, E.: Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5(10), 25309–2550 (1993)CrossRefzbMATHGoogle Scholar
  15. Kontorovich, V.M.: To the question on stability of shock waves. Sov. Phys. JETP 6, 1179 (1957). At. Res. Agency Establ. AERE Lib./Trans. 648 (1956)Google Scholar
  16. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretica Physics, vol. 6, 2nd edn. Butterworth-Heinemann (1987)Google Scholar
  17. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock-turbulence interaction. Phys. Fluids 21, 126101 (2009)ADSCrossRefzbMATHGoogle Scholar
  18. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds- and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. Lasseigne, D.G., Jackson, T.L., Hussaini, M.Y.: Nonlinear interaction of a detonation/vorticity wave. Phys. Fluids A 3, 1972–1979 (1991)ADSCrossRefzbMATHGoogle Scholar
  20. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993)ADSCrossRefGoogle Scholar
  21. Lee, S., Lele, S.K., Moin, P.: Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Lele, S.K.: Shock-jump relations in a turbulent flow. Phys. Fluids A 4(12), 2900–2905 (1992)ADSCrossRefzbMATHGoogle Scholar
  23. Lubchich, A.A., Pudovkin, M.I.: Interaction of small perturbations with shock waves. Phys. Fluids 16(12), 4489–4505 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. Mahesh, K., Lele, S.K., Moin, P.: The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300, 383–407 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. Mahesh, K., Moin, P., Lele, S.K.: The interaction of a shock wave with a turbulent shear flow. Report No. TF-69, Department of Mecanical Engineering, Stanford University (1996)Google Scholar
  26. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Miller, G.H., Ahrens, T.J.: Shock wave viscosity measurement. Rev. Modern Phys. 63, 919–948 (1991)ADSCrossRefGoogle Scholar
  28. Moore, F.K.: Unsteady oblique interaction of a shock wave with a plane disturbance. Technical report 2879, NACA (1954)Google Scholar
  29. Ribner, H.S.: Convection of a pattern of vorticity through a shock wave. Technical report 1164, NACA (1953)Google Scholar
  30. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756(R1), 1–13 (2014)ADSCrossRefGoogle Scholar
  31. Sinha, K.: Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech. 707, 74–110 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. Wouchuk, J.G., Huete, C., Velikovich, A.L.: Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79, 066315 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. Zank, P., Zhou, Y., Matthaeus, W.H., Rice, W.K.M.: The interaction of turbulence with shock waves: a basic model. Phys. Fluids 14(11), 3766–3774 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications, Mineola (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations