Coupled Effects: Rotation, Stratification, Strain and Shear

  • Pierre Sagaut
  • Claude Cambon


This chapter addresses detailed couplings between rotation, stratification and shear, with the simplest toy models for applications to engineering, geophysics and astrophysics. The chapter includes recent DNS results of rotating stratified turbulence, with a very clear inverse cascade of energy that supports existing theoretical approaches to quasi-geostrophic turbulence. More results are given on the rotating and stratified shear flow, with recent advances of the linear theory for the stability of accretion discs in astrophysics. New challenges for the linear theory are identified on this occasion: Transient growth, regeneration mechanisms, and eventually bypass transition to turbulence. Finally, the elliptical flow instability is used for renewing the dynamics of precessing rotating flows.


  1. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion discs. Rev. Mod. Phys. 70(1), 1 (1998)ADSCrossRefGoogle Scholar
  2. Bartello, P.: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52(24), 4410–4428 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. Bayly, B.J.: Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160–2163 (1986)ADSMathSciNetCrossRefGoogle Scholar
  4. Bradshaw, P.: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177–191 (1969)ADSCrossRefzbMATHGoogle Scholar
  5. Cambon, C.: Etude spectrale d’un champ turbulent incompressible soumis à des effets couplés de déformation et rotation imposés extérieurement. Université Lyon I, France, Thèse de Doctorat d’Etat (1982)Google Scholar
  6. Cambon, C.: Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. B (Fluids) 20, 489–510 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cambon, C., Scott, J.F.: Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 1–53 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. Cambon, C., Teissèdre, C., Jeandel, D.: Etude d’ effets couplés de rotation et de déformation sur une turbulence homogène. Journal de Mécanique Théorique et Appliquée 5, 629 (1985)ADSzbMATHGoogle Scholar
  9. Cambon, C., Godeferd, F.S., Kaneda, Y.: Phase-mixing and toroidal cascade in rotating and stratified flows, In: 18 th Congrès Français de Mécanique, International Session on stratied rotating flows, Grenoble, 27–31 August 2007 (AFM Symposium)Google Scholar
  10. Cambon, C., Benoit, J.P., Shao, L., Jacquin, L.: Stability analysis and LES of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175–200 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Cambon, C., Godeferd, F.S., Nicolleau, F., Vassilicos, J.C.: Turbulent diffusion in rapidly rotating flows with and without stable stratification. J. Fluid Mech. 499, 231–255 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Chagelishvili, G.D., Tevzadze, A.G., Bodo, G., Moiseev, S.S.: Phys. Rev. Lett. 79, 3178 (1997)Google Scholar
  13. Chagelishvili, G.D., Zahn, J.-P., Tevzadze, A.G., Lominadze, J.G.: On hydrodynamic shear turbulence in Keplerian discs: via transient growth to bypass transition. Astron. Astrophys. 402, 401–407 (2003)ADSCrossRefGoogle Scholar
  14. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971)ADSCrossRefGoogle Scholar
  15. Craik, A.D.D.: The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech. 198, 275–292 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)zbMATHGoogle Scholar
  17. Duguet, Y., Scott, J.F., Le Penven, L.: Instability inside a rotating gas cylinder subject to axial periodic strain. Phys. Fluids 17, 114103 (2005)ADSCrossRefzbMATHGoogle Scholar
  18. Eady, E.T.: Long waves and cyclonic waves. Tellus 1, 33–52 (1949)MathSciNetCrossRefGoogle Scholar
  19. Godeferd, F.S., Cambon, C.: Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6, 2084–2100 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Godeferd, F.S., Cambon, C., Leblanc, S.: Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Suart vortices with external rotation. J. Fluid Mech. 449, 1–37 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Hanazaki, H., Hunt, J.C.R.: Linear processes in unsteady stably stratified sheared turbulence with mean shear. J. Fluid Mech. 507, 1–42 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Herring, J.R.: Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci. 37, 969–977 (1980)MathSciNetCrossRefGoogle Scholar
  23. Jacobitz, F.G., Sarkar, S., van Atta, C.W.: J. Fluid Mech. 342, 231 (1997)Google Scholar
  24. Kaneda, Y.: Single-particle diffusion in strongly stratified and/or rapidly rotating turbulence. J. Phys. Soc. Jpn. 69, 3847–3852 (2000)ADSCrossRefGoogle Scholar
  25. Kassinos, S.C., Akylas, E., Langer, C.A.: Rapidly sheared homogeneous stratified turbulence in a rotating frame. Phys. Fluids 19, 021701 (2006)ADSCrossRefzbMATHGoogle Scholar
  26. Kerswell, R.R.: The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107–144 (1993)ADSCrossRefGoogle Scholar
  27. Kerswell, R.R.: Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Kurian, S., Smith, L., Wingate, B.: On the two-point correlation of potential vorticity in rotating and stratified turbulence. J. Fluid Mech. 555, 131–140 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Leblanc, S., Cambon, C.: On the three-dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids 9(5), 1307–1316 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. Leuchter, O., Cambon, C.: EDQNM and DNS predictions of rotation effects in strained axisymmetric turbulence. In: Proceedings of 11th International Symposium Turbulent Shear Flow, Grenoble (1997)Google Scholar
  31. Leuchter, O., Dupeuble, A.: Rotating homogeneous turbulence subjected to an axisymmetric contraction. In: Proceedings of 9th International Symposium Turbulent Shear Flow, vol. 137, pp. 1–6. Kyoto (1993)Google Scholar
  32. Liechtenstein, L., Godeferd, F.S., Cambon, C.: Nonlinear formation of structures in rotating stratified turbulence. J. Turbul. 6, 1–18 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids A 3, 2644–2641 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Lundgren, T.S., Mansour, N.N.: Transition to turbulence in an elliptic vortex. J. Fluid Mech. 307, 43–62 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Mahalov, A.: The instability of rotating fluid columns subjected to a weak external Coriolis force. Phys. Fluids A 5, 891–900 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Mamatsashvili, G.R., Avsarkisov, V.S., Chagelishvili, G.D., Chanishvili, R.G., Kalashnik, M.V.: Transient dynamics on nonsymmetric perturbations versus symmetric instability in baroclinic zonal shear flows. J. Atmos. Sci. 67, 2972–2989 (2010)ADSCrossRefGoogle Scholar
  37. Mansour, N.N., Lundgren, T.S.: Three-dimensional instability of rotating flows with oscillating axial strain. Phys. Fluids A 2, 2089–2091 (1990)ADSCrossRefGoogle Scholar
  38. Marino, R., Pouquet, A., Rozenberg, D.: Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 114, 114504 (2015)ADSCrossRefGoogle Scholar
  39. Marino, R., Mininni, P.D., Rozenberg, D., Pouquet, A.: Inverse cascades in rotating stratified turbulence. Eur. Phys. Lett. 102, 44006 (2013)ADSCrossRefGoogle Scholar
  40. Marino, R., Mininni, P.D., Rozenberg, D., Pouquet, A.: Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E 90, 023018 (2014)ADSCrossRefGoogle Scholar
  41. Miles, J.W.: On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. Pedley, T.J.: On the stability of viscous flow in a rapidly rotating pipe. J. Fluid Mech. 35, 97–115 (1969)ADSCrossRefzbMATHGoogle Scholar
  43. Pedlowsky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)CrossRefGoogle Scholar
  44. Pieri, A.B., Cambon, C., Godeferd, F.S., Salhi, A.: Linearized potential vorticity mode and its role in transition to baroclinic instability. Phys. Fluids 24, 076603 (2012)ADSCrossRefGoogle Scholar
  45. Pieri, A.B., Godeferd, F.S., Cambon, C., Salhi, A.: Non-geostrophic instabilities of an equilibrium baroclinic state. J. Fluid Mech. 734, 535–566 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. Praud, O., Sommeria, J., Fincham, A.: Decaying grid turbulence in a rotating stratified fluid. J. Fluid Mech. 547, 389–412 (2006)ADSCrossRefzbMATHGoogle Scholar
  47. Salhi, A.: Similarities between rotation and stratification effects on homogeneous shear flow. Theor. Comput. Fluid Dyn. 15, 339–358 (2002)CrossRefzbMATHGoogle Scholar
  48. Salhi, A., Cambon, C.: An analysis of rotating shear flow using linear theory and DNS and LES results. J. Fluid Mech. 347, 171–195 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. Salhi, A., Cambon, C.: Advance in rapid distortion theory: from rotating shear to the baroclinic instability. J. Appl. Mech. 73, 449–460 (2006)ADSCrossRefzbMATHGoogle Scholar
  50. Salhi, A., Cambon, C.: Precessing rotating flows with additional shear: stability analysis. Phys. Rev. E 79, 036303 (2009)ADSMathSciNetCrossRefGoogle Scholar
  51. Salhi, A., Cambon, C.: Stability of rotating stratified shear flow: an analytical study. Phys. Rev. E 81, 026302 (2010)ADSCrossRefGoogle Scholar
  52. Salhi, A., Cambon, C., Speziale, C.G.: Linear stability analysis of plane quadratic flows in a rotating frame. Phys. Fluids 9(8), 2300–2309 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. Salhi, A., Lehner, T., Godeferd, F., Cambon, C.: Wave-vortex mode coupling in astrophysical accretion discs under combined radial and vertical stratification. Astrophys. J. 771, 103 (2013)ADSCrossRefGoogle Scholar
  54. Salhi, A., Jacobitz, F.G., Schneider, K., Cambon, C.: Nonlinear dynamics and anisotropic structure of rotating sheared turbulence. Phys. Rev. E 89, 013020 (2014)ADSCrossRefGoogle Scholar
  55. Schmid, P.J.: Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. Sipp, D., Lauga, E., Jacquin, L.: Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11, 3716–3728 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. Smith, L.M., Waleffe, F.: Generation of slow, large scales in forced rotating, stratified turbulence. J. Fluid Mech. 451, 145–168 (2002)ADSCrossRefzbMATHGoogle Scholar
  58. Staquet, C., Riley, J.J.: On the velocity field associated to potential vorticity. Dyn. Atmos. Ocean. 14, 93–123 (1989)ADSCrossRefGoogle Scholar
  59. Tritton, D.J.: Stabilization and destabilization of turbulent shear flow in a rotating fluid. J. Fluid Mech. 241, 503–523 (1992)ADSCrossRefzbMATHGoogle Scholar
  60. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluid A 2, 76–80 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. Yanase, S., Flores, C., Métais, O., Riley, J.J.: Rotating free shear flow I: linear stability analysis. Phys. Fluids A 5, 2725–2737 (1992)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Modélisation et Procédés Propres, UMR CNRS 7340, Ecole Centrale de MarseilleAix-Marseille UniversitéMarseilleFrance
  2. 2.Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509Ecole Centrale de LyonÉcullyFrance

Personalised recommendations