Advertisement

Semidiurnal Internal Wave Global Field; Global Estimates of Internal Tide Energy

  • Eugene G. MorozovEmail author
Chapter

Abstract

This chapter describes the semidiurnal internal wave global field and global estimates of internal tide energy. One of the most important ideas presented here is the strong generation of internal tides over submarine ridges. Energy fluxes from submarine ridges related to tidal internal waves exceed many times the fluxes from continental slopes. Submarine ridges form an obstacle to the propagation of tidal currents that provides internal tide generation because tidal currents obtain a vertical component over the ridge slopes. Energy fluxes from submarine ridges account for approximately one fourth of the total energy dissipation of the barotropic tides. Combined model simulations and moored measurements result in a map of the global distribution of internal tide amplitudes.

References

  1. Accad Y, Pekeris CL (1978) Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone. Phil Trans Roy Soc A 290(1368):235–266CrossRefGoogle Scholar
  2. Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centuroni LR, … & Tang TYD (2015) The formation and fate of internal waves in the South China Sea. Nature 521(7550):65–69.  https://doi.org/10.1038/nature14399
  3. Althaus AM, Kunze E, Sanford TB (2003) Internal tide radiation from Mendocino Escarpment. J Phys Oceanogr 33:1510–1527CrossRefGoogle Scholar
  4. Arbic BK, Richman JG, Shriver JF, Timko PG, Metzger EJ, Wallcraft AJ (2012) Global modeling of internal tides within an eddying ocean general circulation model. Oceanography 25(2):20–29CrossRefGoogle Scholar
  5. Baines PG (1973) The generation of internal tides by flat-bump topography. Deep-Sea Res 20:179–205Google Scholar
  6. Baines PG (1974) The generation of internal tides over steep continental slopes. Phil Trans Roy Soc London Ser A 277:27–58CrossRefGoogle Scholar
  7. Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338CrossRefGoogle Scholar
  8. Baines PG (1983) Tidal motion in submarine canyons—a laboratory experiment. J Phys Oceanogr 13(2):310–328CrossRefGoogle Scholar
  9. Baines PG (2007) Internal tide generation by seamounts. Deep Sea Res 54(9):1486–1508.  https://doi.org/10.1016/j.dsr.2007.05.009 CrossRefGoogle Scholar
  10. Bell TH (1975) Topographically generated internal waves in the open ocean. J Geophys Res 80(3):320–327CrossRefGoogle Scholar
  11. Bogdanov KT, Magarik VA (1967) Numerical solution of the problem of tidal wave propagation (M2 and S2) in the World Ocean. Dokl Akad Nauk SSSR 172(6):1315–1317Google Scholar
  12. Bracher C, Flatté SM (1997) A baroclinic tide in the Eastern North Pacific determined from 1000-km acoustic transmissions. J Phys Oceanogr 27(4):485–497CrossRefGoogle Scholar
  13. Brickman D, Loder JW (1993) Energetics of the internal tide on northern Georges Bank. J Phys Oceanogr 23(3):409–424CrossRefGoogle Scholar
  14. Carter GS, Merrifield MA, Becker JM, Katsumata K, Gregg MC, Luther DS, Levine MD, Boyd TJ, Firing YL (2008) Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J Phys Oceanogr 38(10):2205–2223CrossRefGoogle Scholar
  15. Cartwright DE (1977) Oceanic tides. Reports on progress in physics 40:665–708Google Scholar
  16. Chiswell SM (1994) Vertical structure of the baroclinic tides in the Central North Pacific Subtropical Gyre. J Phys Oceanogr 24(9):2032–2039CrossRefGoogle Scholar
  17. Chiswell SM, Moore MI (1999) Internal tides near the Kermadec ridge. J Phys Oceanogr 29(5):1019–1035CrossRefGoogle Scholar
  18. Chiswell SM (2000) Tidal energetics over the Chatham rise, New Zealand. J Phys Oceanogr 30(9):2452–2460CrossRefGoogle Scholar
  19. Chiswell SM (2002) Energy levels, phase, and amplitude modulation of the baroclinic tide off Hawaii. J Phys Oceanogr 32(9):2640–2651CrossRefGoogle Scholar
  20. Cox CS, Sandström H (1962) Coupling of internal and surface waves in water of variable depth. J Oceanogr Soc Japan, 20-th anniversary 499–513Google Scholar
  21. Cummins PF, Oey LY (1997) Simulation of barotropic and baroclinic tides off Northern British Columbia. J Phys Oceanogr 27(5):762–781CrossRefGoogle Scholar
  22. Cummins PF, Masson D, Foreman MG (2000) Stratification and mean flow effects on diurnal tidal currents off Vancouver Island. J Phys Oceanogr 30:15–30CrossRefGoogle Scholar
  23. Cummins PF, Cherniawsky JY, Foreman MG (2001) North Pacific internal tides from the Aleutian ridge: altimeter observations and modeling. J Mar Res 59:167–191CrossRefGoogle Scholar
  24. Dushaw BD (2006) Mode-1 internal tides in the western North Atlantic Ocean. Deep-Sea Res 53(3):449–473CrossRefGoogle Scholar
  25. Dushaw BD, Worcester PF, Dzieciuch MA (2011) On the predictability of mode-1 internal tides. Deep-Sea Res 58(6):677–698CrossRefGoogle Scholar
  26. Egbert GD (1997) Tidal data inversion: interpolation and inference. Prog Oceanogr 40:53–80CrossRefGoogle Scholar
  27. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefGoogle Scholar
  28. Egbert GD, Ray RD (2001) Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res 106:22475–22502Google Scholar
  29. Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204CrossRefGoogle Scholar
  30. Garrett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369CrossRefGoogle Scholar
  31. Gerkema T, van Haren H (2007) Internal tides and energy fluxes over Great Meteor Seamount. Ocean Sci 3:441–449.  https://doi.org/10.5194/os-3-441-2007 CrossRefGoogle Scholar
  32. Gerkema T, Zimmerman JTF (1995) Generation of nonlinear internal tides and solitary waves. J Phys Oceanogr 25(6):1081–1094CrossRefGoogle Scholar
  33. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, NYGoogle Scholar
  34. Gordeev RG, Kagan BA, Rivkind VY (1974) Modeling of semidiurnal tides in the global ocean. Izv Acad Sci USSR, Ser Atmosph Oceanic Phys 10(7):497–498Google Scholar
  35. Hall RA, Huthnance JM, Williams RG (2011) Internal tides, nonlinear internal wave trains, and mixing in the Faroe-Shetland Channel. J Geophys Res 116:C03008.  https://doi.org/10.1029/2010JC006213 CrossRefGoogle Scholar
  36. Hallock ZR, Field RL (2005) Internal-wave energy fluxes on the New Jersey shelf. J Phys Oceanogr 35(1):3–12CrossRefGoogle Scholar
  37. Hendershott MC (1973) Inertial oscillations of tidal period. Prog Oceanogr 6:1–27CrossRefGoogle Scholar
  38. Holloway PE, Merrifield MA (1999) Internal tide generation by seamounts, ridges, and islands. J Geophys Res 104(C11):25937–25951CrossRefGoogle Scholar
  39. Holloway PE, Chatwin PG, Craig P (2001) Observations from the Australian North West shelf in Summer 1995. J Phys Oceanogr 31(5):1182–1199CrossRefGoogle Scholar
  40. Jayne SR, St. Laurent LC (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28:811–814CrossRefGoogle Scholar
  41. Jeans DRG, Sherwin TJ (2001) The evolution and energetics of large amplitude nonlinear internal waves on the Portuguese shelf. J Mar Res 59:327–353.  https://doi.org/10.1357/002224001762842235 CrossRefGoogle Scholar
  42. Johnston TMS, Rudnick DL, Kelly SM (2015) Standing internal tides in the Tasman Sea observed by gliders. J Phys Oceanogr 45(11):2715–2737CrossRefGoogle Scholar
  43. Kang SK, Foreman MG, Crawford WR, Cherniawsky JY (2000) Numerical modeling of internal tide generation along the Hawaiian Ridge. J Phys Oceanogr 30(5):1083–1098CrossRefGoogle Scholar
  44. Kantha LH, Tierney CC (1997) Global baroclinic tides. Prog Oceanogr 40:163–178.  https://doi.org/10.1016/S0079-6611(97)00028-1 CrossRefGoogle Scholar
  45. Kaula WM, Harris AW (1975) Dynamics of Lunar origin and orbital evolution. Rev Geophys Space Phys 13(2):363–371.  https://doi.org/10.1029/RG013i002p00363 CrossRefGoogle Scholar
  46. Klymak JM, Simmons HL, Braznikov D, Kelly S, MacKinnon JA, Alford MH, Pinkel R, Nash JD (2016) Reflection of linear internal tides from realistic topography: the Tasman continental slope. J Phys Oceanogr 46(11):3321–3337CrossRefGoogle Scholar
  47. Kunze E, Boss E (1998) A model for vortex-trapped internal waves. J Phys Oceanogr 28(10):2104–2115CrossRefGoogle Scholar
  48. Kunze E, Rosenfeld LK, Carter GS, Gregg MC (2002) Internal waves in Monterey submarine canyon. J Phys Oceanogr 32(6):1890–1913CrossRefGoogle Scholar
  49. Largier JL (1994) The internal tide over the shelf inshore of Cape Point Valley South Africa. J Geophys Res 99:10023–10034CrossRefGoogle Scholar
  50. Le Provost C, Lyard F (1997) Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Prog Oceanogr 40(1–4):37–52Google Scholar
  51. Lee CM, Sanford TB, Kunze E, Nash JD, Merrifield MA, Holloway PE (2006) Internal tides and turbulence along the 3000-m isobath of the Hawaiian ridge. J Phys Oceanogr 36(6):1165–1183CrossRefGoogle Scholar
  52. Li Z, von Storch J-S, Müller M (2015) The M2 internal tide simulated by a 1/10° OGCM. J Phys Oceanogr 45(12):3119–3135CrossRefGoogle Scholar
  53. Llewellyn Smith SG, Young WR (2002) Conversion of the barotropic tide. J Phys Oceanogr 32(5):1554–1566CrossRefGoogle Scholar
  54. Maraldi C, Lyard F, Testut L, Coleman R (2011) Energetics of internal tides around the Kerguelen plateau from modeling and altimetry. J Geophys Res 116:C06004.  https://doi.org/10.1029/2010JC006515 CrossRefGoogle Scholar
  55. Merrifield MA, Holloway PE, Johnston TS (2001) The generation of internal tides at the Hawaiian Ridge. Geophys Res Lett 28:559–562CrossRefGoogle Scholar
  56. Merrifield MA, Holloway PE (2002) Model estimates of M2 internal tide energetics at the Hawaiian ridge. J Geophys Res 107(C8):3179.  https://doi.org/10.1029/2001JC000996
  57. Mork M (1968) On the formation of internal waves caused by tidal flow over a bottom irregularity. Rep Geophys Inst Univ, Bergen, Norway, p 28Google Scholar
  58. Morozov EG, Nikitin SV (1984a) Propagation of semidiurnal internal waves in a region with varying bottom topography. Oceanol Res (36):44–49Google Scholar
  59. Morozov EG, Nikitin SV (1984b) Separation and analysis of the baroclinic component of semidiurnal temperature fluctuations. Oceanol Res (36):55–61Google Scholar
  60. Morozov EG (1985) Oceanic internal waves. Nauka, Moscow. 151 [in Russian]Google Scholar
  61. Morozov EG (1995) Semidiurnal internal wave global field. Deep-Sea Res 42(1):135–148CrossRefGoogle Scholar
  62. Morozov EG (2006) Internal tides. Global field of internal tides and mixing caused by internal tides. In: Waves in geophysical fluids. Springer, Wein, New York, pp 271–332Google Scholar
  63. Moum JN, Klymak JM, Nash JD, Perlin A, Smyth WD (2007) Energy transport by nonlinear internal waves. J Phys Oceanogr 37:1968–1988.  https://doi.org/10.1175/JPO3094.1 CrossRefGoogle Scholar
  64. Munk WH, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010CrossRefGoogle Scholar
  65. Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134CrossRefGoogle Scholar
  66. Nash JD, Kunze E, Lee CM, Sanford TB (2006) Structure of the baroclinic tide generated at Kaena ridge, Hawaii. J Phys Oceanogr 36(6):1123–1135CrossRefGoogle Scholar
  67. New AL (1988) Internal tidal mixing in the Bay of Biscay. Deep-Sea Res 35:691–709CrossRefGoogle Scholar
  68. Niiler PP (1968) On the internal tidal motions in the Florida straits. Deep-Sea Res 15(1):113–123Google Scholar
  69. Nikurashin M, Ferrari R (2011) Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys Res Lett 38:L08610.  https://doi.org/10.1029/2011GL046576 CrossRefGoogle Scholar
  70. Niwa Y, Hibiya T (2001) Numerical study of the spatial distribution of the M2 internal tide in the Pacific ocean. J Geophys Res 106:22441–22449Google Scholar
  71. Nycander J (2005) Generation of internal waves in the deep ocean by tides. J Geophys Res 110:C10028.  https://doi.org/10.1029/2004JC002487 CrossRefGoogle Scholar
  72. Phillips OM (1977) The dynamics of the upper ocean, 2nd edn. Cambridge Univ. Press, NY, p 336Google Scholar
  73. Prinsenberg SJ, Wilmot WL, Rattray M (1974) Generation and dissipation of coastal internal tides. Deep-Sea Res 21(4):263–281Google Scholar
  74. Rainville L, Pinkel R (2006a) Baroclinic energy flux at the Hawaiian ridge: observations from the R/P FLIP. J Phys Oceanogr 36(6):1104–1122CrossRefGoogle Scholar
  75. Rainville L, Pinkel R (2006b) Propagation of low-mode internal waves through the ocean. J Phys Oceanogr 36(6):1220–1236CrossRefGoogle Scholar
  76. Rainville L, Lee CM, Rudnick DL, Yang K-C (2013) Propagation of internal tides generated near Luzon Strait: observations from autonomous gliders. J Geophys Res 118(C9):4125–4138.  https://doi.org/10.1002/jgrc.20293 CrossRefGoogle Scholar
  77. Rattray M (1960) On the coastal generation of internal tides. Tellus 12:54–62CrossRefGoogle Scholar
  78. Rattray M, Dworsky J, Kovala P (1969) Generation of long internal waves at the continental slope. Deep-Sea Res 16(Suppl.):179–195Google Scholar
  79. Ray RD, Mitchum GT (1997) Surface manifestation of internal tides in deep ocean: observations from altimetry and island gauges. Prog Oceanogr 40:135–162CrossRefGoogle Scholar
  80. Ray RD (1999) A global ocean tide model from TOPEX/Poseison altimetry: GOT 99.2. NASA/Tech Memo 209478Google Scholar
  81. Ray RD, Cartwright DE (2001) Estimates of internal tide energy-fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys Res Lett 28:1259–1262CrossRefGoogle Scholar
  82. Ray RD, Zaron ED (2016) M2 Internal tides and their observed wavenumber spectra from satellite altimetry. J Phys Oceanogr 46(1):3–22CrossRefGoogle Scholar
  83. Rayson MD, Ivey GN, Jones NL, Meuleners MJ, Wake GW (2011) Internal tide dynamics in a topographically complex region: browse basin, Australian North West shelf. J Geophys Res 116:C01016.  https://doi.org/10.1029/2009JC005881 CrossRefGoogle Scholar
  84. Sandström H, Oakey NS (1995) Dissipation in internal tides and solitary waves. J Phys Oceanogr 25(4):604–614CrossRefGoogle Scholar
  85. Sandström H, Elliott JA (1984) Internal tide and solitons on the Scotian shelf: a nutrient pump at work. J Geophys Res 89(C4):6415–6426.  https://doi.org/10.1029/JC089iC04p06415 CrossRefGoogle Scholar
  86. Sandström H, Elliott JA (2011) Production, transformation, and dissipation of energy in internal tides near the continental shelf edge. J Geophys Res 116:C04004.  https://doi.org/10.1029/2010JC006296 CrossRefGoogle Scholar
  87. Schwiderski EW (1979) Global ocean tides. Part II: the semidiurnal principal lunar tide (M2), Atlas of tidal charts and maps. Naval Surface Weapons Center Report. NSWC TR 79–414, 15 ppGoogle Scholar
  88. Schwiderski EW (1980a) Ocean tides, I, Global ocean tidal equations. Mar Geod 3:161–217CrossRefGoogle Scholar
  89. Schwiderski EW (1980b) On charting global ocean tides. Reviews Geoph Space Phys 18:243–268CrossRefGoogle Scholar
  90. Sherwin T (1988) Analysis of an internal tide observed on the Marlin Shelf north of Ireland. J Phys Oceanogr 18:1035–1050CrossRefGoogle Scholar
  91. Sherwin TJ, Taylor NK (1990) Numerical investigations of linear internal tide generation in the Rockall Trough. Deep-Sea Res 37(10):1595–1618CrossRefGoogle Scholar
  92. Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep-Sea Res Part II 51:3043–3068CrossRefGoogle Scholar
  93. Sjöberg B, Stigebrandt A (1992) Computations of the geographical distribution of the energy flux to mixing process via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res 39:269–291CrossRefGoogle Scholar
  94. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science. 277:1956–1962. http://topex.ucsd.edu/cgi-bin/get_data.cgi; last accessed in October 2017
  95. Smith DK, Jordan TH (1988) Seamount statistics in the Pacific ocean. J Geophys Res 93(B4):2899–2918CrossRefGoogle Scholar
  96. St. Laurent LS, Stringer S, Garrett C, Perrault-Joncas D (2003) The generation of internal tides at abrupt topography. Deep-Sea Res 50:987–1003Google Scholar
  97. Torgrimson GM, Hickey BM (1979) Barotropic and baroclinic tides over the continental slope and shelf off Oregon. J Phys Oceanogr 9:945–961CrossRefGoogle Scholar
  98. Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424Google Scholar
  99. Weigand JG, Farmer H, Prinsenberg S, Rattray M (1969) Effects of friction and surface tide angle of incidence on the coastal generation of internal tides. J Mar Res 27:241–259Google Scholar
  100. WOD13 (2013) World ocean database 2013, Geographically sorted data. https://www.nodc.noaa.gov/OC5/WOD/datageo.html. Last updated 26 October 2013; last accessed in October 2017
  101. Yesson C, Clark MR, Taylor ML, Rogers AD (2011) The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res 58(4):442–453CrossRefGoogle Scholar
  102. Zaron ED, Egbert GD (2006) Estimating open-ocean barotropic tidal dissipation: the Hawaiian ridge. J Phys Oceanogr 36(6):1019–1035CrossRefGoogle Scholar
  103. Zhao Z, Alford MH, Girton JB, Rainville L, Simmons HL (2016) Global observations of open-ocean mode-1 M2 internal tides. J Phys Oceanogr 46(6):1657–1684CrossRefGoogle Scholar
  104. Zilberman NV, Becker JM, Merrifield MA, Carter GS (2009) Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J Phys Oceanogr 39(10):2635–2651CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Physical DepartmentShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations