Skip to main content
  • 788 Accesses

Abstract

This chapter describes some important properties of internal tides. The diurnal and semidiurnal spectral peaks related to the internal tides consist of separate waves with close frequencies. Internal tides are modulated due to the spring-neap variability of the barotropic tide that generates them. Strong internal tides usually have mode structure, which is considered here on the basis of field measurements. Fluctuations of currents at a semidiurnal frequency consist of the currents induced by the barotropic tide and internal tide. The methods for separating them are considered. The beam propagation of internal tides near the generation regions of submarine slopes is considered. The long distance propagation of internal tides and decay of their energy are analyzed based on observations and modeling. Mixing induced by internal tides influences the propagation of Antarctic Bottom Water to the north in the Atlantic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford MH, Zhao Z (2007) Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J Phys Oceanogr 37(7):1829–1848

    Article  Google Scholar 

  • Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338

    Article  Google Scholar 

  • Bell TH (1975) Topographically generated internal waves in the open ocean. J Geophys Res 80(3):320–327

    Article  Google Scholar 

  • Bogdanov KT, Magarik VA (1967) Numerical solution of the problem of tidal wave propagation (M2 and S2) in the World Ocean. Dokl Akad Nauk SSSR 172(6):1315–1317

    Google Scholar 

  • Bracher C, Flatté SM (1997) A baroclinic tide in the Eastern North Pacific determined from 1000-km acoustic transmissions. J Phys Oceanogr 27(4):485–497

    Article  Google Scholar 

  • Connary SD, Ewing M (1974) Penetration of Antarctic bottom water from the Cape Basin into the Angola Basin. J Geophys Res 79:463–469

    Article  Google Scholar 

  • Dushaw BD, Cornuelle BD, Worcester PF, Howe BW, Luther DS (1995) Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceanogr 25:631–647

    Article  Google Scholar 

  • Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204

    Article  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778

    Article  Google Scholar 

  • Epifano CC, Rotunno R (2005) The dynamic of orographic wake formation in flows with upstream bloking. J Atmos Sci 62:3127–3150

    Article  Google Scholar 

  • Fahrbach E (1976) Einige Beobachtungen sur Erseugung und Ausbreitung interner Gereiten wellen am Kontinentalabhang vor Sierre Leone “Meteor” Freschungsegeb No 18:64–77

    Google Scholar 

  • Fjelstad JE (1933) Interne Wellen. Geophys Publ Oslo 10(6):1–35

    Google Scholar 

  • Fliegel M, Hunkins K (1975) Internal wave dispersion calculated using the Thomson-Haskel method. J Phys Oceanogr 5(3):541–548

    Article  Google Scholar 

  • Friedrichs MA, Hall MM (1993) Deep circulation in the tropical North Atlantic. J Mar Res 51(4):697–736

    Article  Google Scholar 

  • Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J Mar Res 42:359–393

    Article  Google Scholar 

  • Garrett CJR, Munk WH (1972) Space-time scales of internal waves. Geophys Fluid Dyn 3(3):225–264

    Article  Google Scholar 

  • Garrett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369

    Article  Google Scholar 

  • Groen P (1948) Contributions to the theory of internal waves. Mededelinger en Verhandelingen, Serie B Deel 11, No. 11, Koninkijk Nederlands Meterologisch Imtitut de Bilt

    Google Scholar 

  • Harvey J, Arhan M (1988) The water masses of the Central North Atlantic in 1983–1984. J Phys Oceanogr 18(12):1855–1874

    Article  Google Scholar 

  • Hogg NG, Zenk W (1997) Long-period changes in the bottom water flowing through Vema Channel. J Geophys Res 102(C7):15639–15646

    Article  Google Scholar 

  • Holloway PE, Merrifield MA (1999) Internal tide generation by seamounts, ridges, and islands. J Geophys Res 104(C11):25937–25951

    Article  Google Scholar 

  • Ivanov YA, Morozov EG (1977) Half-month inequality of internal waves of tidal period. Dokl Akad Nauk SSSR 236(3):733–735

    Google Scholar 

  • Ivanov YA, Morozov EG (1983) Investigations of temperature fluctuations at tidal and inertial periods. In: Atlantic hydrophysical polygon-70. Amerind Co. Oxonian Press Ltd., New Delhi, pp 289–299

    Google Scholar 

  • Kang SK, Foreman MG, Crawford WR, Cherniawsky JY (2000) Numerical modeling of internal tide generation along the Hawaiian Ridge. J Phys Oceanogr 30(5):1083–1098

    Article  Google Scholar 

  • Kelly SM, Jones NL, Nash JD, Waterhouse AF (2013) The geography of semidiurnal mode-1 internal-tide energy loss. Geophys Res Lett 40:4689–4693. https://doi.org/10.1002/grl.50872

    Article  Google Scholar 

  • Koltermann KP, Sokov AV, Tereschenkov VP, Dobroliubov SA, Lorbacher K, Sy A (1999) Decadal changes in the thermohaline circulation of the North Atlantic. Deep-Sea Res II 46:109–138

    Article  Google Scholar 

  • Krauss W (1966) Interne Wellen. Gebrüder Borntraeger, Berlin-Nikolasee

    Google Scholar 

  • Kulakov AV (1977) Numerical methods for calculating the vertical structure of oscillations in the ocean. Oceanology 17(5):525–528

    Google Scholar 

  • St. Laurent LS, Stringer S, Garrett C, Perrault-Joncas D (2003) The generation of internal tides at abrupt topography. Deep-Sea Res 50:987–1003

    Google Scholar 

  • LeBlond PH, Mysak LA (1978) Waves in the Ocean. Elsevier oceanographic series. Elsevier, Amsterdam, p 602

    Google Scholar 

  • Lozovatsky ID, Shapovalov SM (1973) Determination of certain characteristics of internal waves at a given Väisälä-Brunt frequency. Izv Acad Sci USSR, Ser Atmos Ocean Phys 9(4):248–249

    Google Scholar 

  • Lozovatsky ID, Morozov EG, Fernando HJS (2003) Spatial decay of energy density of tidal internal waves. J Geophys Res 108(C6):3201–3216

    Article  Google Scholar 

  • Mantyla AW, Reid JL (1983) Abyssal characteristics of the World Ocean waters. Deep-Sea Res 30(8):805–833

    Article  Google Scholar 

  • Marchuk GI, Kagan BA (1989) Dynamics of Ocean tides. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • McCartney MS, Bennet SL, Woodgate-Jones ME (1991) Eastward flow through the Mid-Atlantic ridge at 11°N and its influence on the abyss of the Eastern basin. J Phys Oceanogr 21(8):1089–1121

    Article  Google Scholar 

  • Melet A, Nikurashin M, Muller C, Falahat S, Nycander J, Timko PG, Arbic BK, Goff JA (2013) Internal tide generation by abyssal hills using analytical theory. J Geophys Res 118:6303–6318. https://doi.org/10.1002/2013JC009212

    Article  Google Scholar 

  • Morozov EG (1983) Investigation of 9-month temperature and velocity spectra in the Western Atlantic. Izv Acad Sci USSR Ser Atmos Ocean Phys 19(10):166–168

    Google Scholar 

  • Morozov EG (1985) Oceanic internal waves. Nauka Moscow 151 p. [in Russian]

    Google Scholar 

  • Morozov EG (1988a) Studies of the mode structure of semidiurnal internal waves. Ocean Res 41:68–72

    Google Scholar 

  • Morozov EG (1991) Tidal fluctuations in the ocean bottom layer. Oceanology 31(2):140–142

    Google Scholar 

  • Morozov EG (1995) Semidiurnal internal wave global field. Deep-Sea Res 42(1):135–148

    Article  Google Scholar 

  • Morozov EG, Fomin LM (1989) Extreme internal tidal waves measured in the Indian Ocean. Dokl Akad Nauk SSSR (Earth Sci Sect) 305(2):241–244

    Google Scholar 

  • Morozov EG, Nikitin SV (1981a) Investigation of the direction of internal waves of tidal period in study area 70. Oceanology 21(2):168–171

    Google Scholar 

  • Morozov EG, Nikitin SV (1981b) Dispersion relation for internal gravity waves and their vertical structure in the POLYMODE region. Ocean Res 34:78–84

    Google Scholar 

  • Morozov EG, Nikitin SV (1984a) Propagation of semidiurnal internal waves in a region with varying bottom topography. Ocean Res 36:44–49

    Google Scholar 

  • Morozov EG, Nikitin SV (1984b) Separation and analysis of the baroclinic component of semidiurnal temperature fluctuations. Ocean Res 36:55–61

    Google Scholar 

  • Morozov E, Vlasenko V (1996) Extreme tidal internal waves near the Mascarene Ridge. J Mar Syst 9(3–4):203–210

    Article  Google Scholar 

  • Morozov EG, Plakhin EA, Shapovalov SM (1976) Time and space variability of the temperature field in the equatorial zone of the Indian Ocean. Izv Acad Sci USSR Ser Atmos Ocean Phys 12(3):179–184

    Google Scholar 

  • Morozov EG, Samodurov AS, Limanskaya LI, Filatova LP (1979a) Investigations of the diurnal and semidiurnal temperature fluctuations. Ocean Res 30:63–73

    Google Scholar 

  • Morozov EG, Samodurov AS, Filatova LP (1979b) Separation of semidiurnal temperature fluctuations determined by the barotropic tide and internal waves. Ocean Res 30:78–81

    Google Scholar 

  • Morozov EG, Nikitin SV, Filyushkin BN (1990) Generation of internal tidal waves in the vicinity of seamounts in the Western Canary Basin. Doklady AN SSSR (Earth Sci Sect). 315(6):321–323

    Google Scholar 

  • Morozov EG, Vlasenko VI, Demidova TA, Ledenev VV (1999) Tidal internal wave propagation over large distances in the Indian Ocean. Oceanology 39(1):42–46

    Google Scholar 

  • Morozov EG, Trulsen K, Velarde MG, Vlasenko VI (2002) Internal tides in the Strait of Gibraltar. J Phys Oceanogr 32:3193–3206

    Article  Google Scholar 

  • Morozov EG, Nechvolodov LV, Sabinin KD (2009) Beam propagation of tidal internal waves over a submarine slope of the Mascarene Ridge. Oceanology 49(6):745–752

    Article  Google Scholar 

  • Morozov E, Demidov A, Tarakanov R, Zenk W (2010) Abyssal channels in the Atlantic Ocean: water structure and flows. Springer, Dordrecht

    Book  Google Scholar 

  • Morozov EG, Tarakanov RY, van Haren H (2013) Transport of AABW through the Kane Gap, tropical NE Atlantic Ocean. Ocean Sci 9:825–835. https://doi.org/10.5194/os-9-825-2013

    Article  Google Scholar 

  • Munk W, Phillips N (1968) Coherence and band structure of inertial motion in the sea. Rev Geophys 6:447–472

    Article  Google Scholar 

  • Munk WH, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010

    Article  Google Scholar 

  • Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134

    Article  Google Scholar 

  • Prinsenberg S, Rattray M (1975) Effects of continental slope and variable Brunt-Väisälä frequency on the coastal generation of internal tides. Deep-Sea Res 22:251–263

    Google Scholar 

  • Richtmyer RD (1957) Difference methods for initial-value problems. Interscience, NY, p 238

    Google Scholar 

  • Saunders PM (1994) The flux of overflow water through the Charlie-Gibbs fracture zone. J Geophys Res 99(C6):12343–12355

    Article  Google Scholar 

  • Tareev BA (1966) Dynamics of internal gravity waves in a continuously stratified ocean. Izv Acad Sci USSR Ser Atmos Ocean Phys 2(10):1064–1075

    Google Scholar 

  • Thorpe SA (1999) Fronts formed by obliquely reflecting internal waves at a sloping boundary. J Phys Oceanogr 29:2462–2467

    Article  Google Scholar 

  • Torgrimson GM, Hickey BM (1979) Barotropic and baroclinic tides over the continental slope and shelf off Oregon. J Phys Oceanogr 9:945–961

    Article  Google Scholar 

  • van Haren H, Gostiaux L, Morozov E, Tarakanov R (2014) Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys Res Lett 41:8445–8451

    Article  Google Scholar 

  • Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424

    Google Scholar 

  • Vlasenko V, Stashchuk N, Hutter K (2005) Baroclinic tides: theoretical modeling and observational evidence. Cambridge University Press, Cambridge, 351 pp

    Google Scholar 

  • Weigand JG, Farmer H, Prinsenberg S, Rattray M (1969) Effects of friction and surface tide angle of incidence on the coastal generation of internal tides. J Mar Res 27:241–259

    Google Scholar 

  • Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. J Phys Oceanogr 38(5):1091–1106

    Article  Google Scholar 

  • Wunsch C (1972) The spectrum from two years to two minutes of temperature fluctuations in the main thermocline at Bermuda. Deep-Sea Res 19(8):577–594

    Google Scholar 

  • Wunsch C (1975a) Deep ocean internal waves: what do we really know? J Geophys Res 80(3):339–343

    Article  Google Scholar 

  • Wunsch C (1975b) Internal tides in the ocean. Rev Geophys Space Phys 13(1):167–182

    Article  Google Scholar 

  • Wüst G (1936) Schichtung und Zirkulation des Atlantischen Ozeans, Das Bodenwasser und die Stratosphäre. In: Defant A (ed) Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs - und Vermessungsschiff “Meteor” 1925–1927, vol 6(1). Walter de Gruyter & Co. Berlin. 411 pp

    Google Scholar 

  • Zaron ED, Egbert GD (2006) Estimating open-ocean barotropic tidal dissipation: the Hawaiian Ridge. J Phys Oceanogr 36(6):1019–1035

    Article  Google Scholar 

  • Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res 119:5434–5448. https://doi.org/10.1002/2014JC010014

  • Zhao Z, Alford MH (2009) New altimetric estimates of mode-1 M2 internal tides in the Central North Pacific Ocean. J Phys Oceanogr 39(7):1669–1684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene G. Morozov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morozov, E.G. (2018). Properties of Internal Tides. In: Oceanic Internal Tides: Observations, Analysis and Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-73159-9_7

Download citation

Publish with us

Policies and ethics