Properties of Internal Tides

  • Eugene G. MorozovEmail author


This chapter describes some important properties of internal tides. The diurnal and semidiurnal spectral peaks related to the internal tides consist of separate waves with close frequencies. Internal tides are modulated due to the spring-neap variability of the barotropic tide that generates them. Strong internal tides usually have mode structure, which is considered here on the basis of field measurements. Fluctuations of currents at a semidiurnal frequency consist of the currents induced by the barotropic tide and internal tide. The methods for separating them are considered. The beam propagation of internal tides near the generation regions of submarine slopes is considered. The long distance propagation of internal tides and decay of their energy are analyzed based on observations and modeling. Mixing induced by internal tides influences the propagation of Antarctic Bottom Water to the north in the Atlantic Ocean.


  1. Alford MH, Zhao Z (2007) Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J Phys Oceanogr 37(7):1829–1848CrossRefGoogle Scholar
  2. Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338CrossRefGoogle Scholar
  3. Bell TH (1975) Topographically generated internal waves in the open ocean. J Geophys Res 80(3):320–327CrossRefGoogle Scholar
  4. Bogdanov KT, Magarik VA (1967) Numerical solution of the problem of tidal wave propagation (M2 and S2) in the World Ocean. Dokl Akad Nauk SSSR 172(6):1315–1317Google Scholar
  5. Bracher C, Flatté SM (1997) A baroclinic tide in the Eastern North Pacific determined from 1000-km acoustic transmissions. J Phys Oceanogr 27(4):485–497CrossRefGoogle Scholar
  6. Connary SD, Ewing M (1974) Penetration of Antarctic bottom water from the Cape Basin into the Angola Basin. J Geophys Res 79:463–469CrossRefGoogle Scholar
  7. Dushaw BD, Cornuelle BD, Worcester PF, Howe BW, Luther DS (1995) Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceanogr 25:631–647CrossRefGoogle Scholar
  8. Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204CrossRefGoogle Scholar
  9. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefGoogle Scholar
  10. Epifano CC, Rotunno R (2005) The dynamic of orographic wake formation in flows with upstream bloking. J Atmos Sci 62:3127–3150CrossRefGoogle Scholar
  11. Fahrbach E (1976) Einige Beobachtungen sur Erseugung und Ausbreitung interner Gereiten wellen am Kontinentalabhang vor Sierre Leone “Meteor” Freschungsegeb No 18:64–77Google Scholar
  12. Fjelstad JE (1933) Interne Wellen. Geophys Publ Oslo 10(6):1–35Google Scholar
  13. Fliegel M, Hunkins K (1975) Internal wave dispersion calculated using the Thomson-Haskel method. J Phys Oceanogr 5(3):541–548CrossRefGoogle Scholar
  14. Friedrichs MA, Hall MM (1993) Deep circulation in the tropical North Atlantic. J Mar Res 51(4):697–736CrossRefGoogle Scholar
  15. Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J Mar Res 42:359–393CrossRefGoogle Scholar
  16. Garrett CJR, Munk WH (1972) Space-time scales of internal waves. Geophys Fluid Dyn 3(3):225–264CrossRefGoogle Scholar
  17. Garrett C, Munk W (1979) Internal waves in the ocean. Ann Rev Fluid Mech 11:339–369CrossRefGoogle Scholar
  18. Groen P (1948) Contributions to the theory of internal waves. Mededelinger en Verhandelingen, Serie B Deel 11, No. 11, Koninkijk Nederlands Meterologisch Imtitut de BiltGoogle Scholar
  19. Harvey J, Arhan M (1988) The water masses of the Central North Atlantic in 1983–1984. J Phys Oceanogr 18(12):1855–1874CrossRefGoogle Scholar
  20. Hogg NG, Zenk W (1997) Long-period changes in the bottom water flowing through Vema Channel. J Geophys Res 102(C7):15639–15646CrossRefGoogle Scholar
  21. Holloway PE, Merrifield MA (1999) Internal tide generation by seamounts, ridges, and islands. J Geophys Res 104(C11):25937–25951CrossRefGoogle Scholar
  22. Ivanov YA, Morozov EG (1977) Half-month inequality of internal waves of tidal period. Dokl Akad Nauk SSSR 236(3):733–735Google Scholar
  23. Ivanov YA, Morozov EG (1983) Investigations of temperature fluctuations at tidal and inertial periods. In: Atlantic hydrophysical polygon-70. Amerind Co. Oxonian Press Ltd., New Delhi, pp 289–299Google Scholar
  24. Kang SK, Foreman MG, Crawford WR, Cherniawsky JY (2000) Numerical modeling of internal tide generation along the Hawaiian Ridge. J Phys Oceanogr 30(5):1083–1098CrossRefGoogle Scholar
  25. Kelly SM, Jones NL, Nash JD, Waterhouse AF (2013) The geography of semidiurnal mode-1 internal-tide energy loss. Geophys Res Lett 40:4689–4693. CrossRefGoogle Scholar
  26. Koltermann KP, Sokov AV, Tereschenkov VP, Dobroliubov SA, Lorbacher K, Sy A (1999) Decadal changes in the thermohaline circulation of the North Atlantic. Deep-Sea Res II 46:109–138CrossRefGoogle Scholar
  27. Krauss W (1966) Interne Wellen. Gebrüder Borntraeger, Berlin-NikolaseeGoogle Scholar
  28. Kulakov AV (1977) Numerical methods for calculating the vertical structure of oscillations in the ocean. Oceanology 17(5):525–528Google Scholar
  29. St. Laurent LS, Stringer S, Garrett C, Perrault-Joncas D (2003) The generation of internal tides at abrupt topography. Deep-Sea Res 50:987–1003Google Scholar
  30. LeBlond PH, Mysak LA (1978) Waves in the Ocean. Elsevier oceanographic series. Elsevier, Amsterdam, p 602Google Scholar
  31. Lozovatsky ID, Shapovalov SM (1973) Determination of certain characteristics of internal waves at a given Väisälä-Brunt frequency. Izv Acad Sci USSR, Ser Atmos Ocean Phys 9(4):248–249Google Scholar
  32. Lozovatsky ID, Morozov EG, Fernando HJS (2003) Spatial decay of energy density of tidal internal waves. J Geophys Res 108(C6):3201–3216CrossRefGoogle Scholar
  33. Mantyla AW, Reid JL (1983) Abyssal characteristics of the World Ocean waters. Deep-Sea Res 30(8):805–833CrossRefGoogle Scholar
  34. Marchuk GI, Kagan BA (1989) Dynamics of Ocean tides. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  35. McCartney MS, Bennet SL, Woodgate-Jones ME (1991) Eastward flow through the Mid-Atlantic ridge at 11°N and its influence on the abyss of the Eastern basin. J Phys Oceanogr 21(8):1089–1121CrossRefGoogle Scholar
  36. Melet A, Nikurashin M, Muller C, Falahat S, Nycander J, Timko PG, Arbic BK, Goff JA (2013) Internal tide generation by abyssal hills using analytical theory. J Geophys Res 118:6303–6318. CrossRefGoogle Scholar
  37. Morozov EG (1983) Investigation of 9-month temperature and velocity spectra in the Western Atlantic. Izv Acad Sci USSR Ser Atmos Ocean Phys 19(10):166–168Google Scholar
  38. Morozov EG (1985) Oceanic internal waves. Nauka Moscow 151 p. [in Russian]Google Scholar
  39. Morozov EG (1988a) Studies of the mode structure of semidiurnal internal waves. Ocean Res 41:68–72Google Scholar
  40. Morozov EG (1991) Tidal fluctuations in the ocean bottom layer. Oceanology 31(2):140–142Google Scholar
  41. Morozov EG (1995) Semidiurnal internal wave global field. Deep-Sea Res 42(1):135–148CrossRefGoogle Scholar
  42. Morozov EG, Fomin LM (1989) Extreme internal tidal waves measured in the Indian Ocean. Dokl Akad Nauk SSSR (Earth Sci Sect) 305(2):241–244Google Scholar
  43. Morozov EG, Nikitin SV (1981a) Investigation of the direction of internal waves of tidal period in study area 70. Oceanology 21(2):168–171Google Scholar
  44. Morozov EG, Nikitin SV (1981b) Dispersion relation for internal gravity waves and their vertical structure in the POLYMODE region. Ocean Res 34:78–84Google Scholar
  45. Morozov EG, Nikitin SV (1984a) Propagation of semidiurnal internal waves in a region with varying bottom topography. Ocean Res 36:44–49Google Scholar
  46. Morozov EG, Nikitin SV (1984b) Separation and analysis of the baroclinic component of semidiurnal temperature fluctuations. Ocean Res 36:55–61Google Scholar
  47. Morozov E, Vlasenko V (1996) Extreme tidal internal waves near the Mascarene Ridge. J Mar Syst 9(3–4):203–210CrossRefGoogle Scholar
  48. Morozov EG, Plakhin EA, Shapovalov SM (1976) Time and space variability of the temperature field in the equatorial zone of the Indian Ocean. Izv Acad Sci USSR Ser Atmos Ocean Phys 12(3):179–184Google Scholar
  49. Morozov EG, Samodurov AS, Limanskaya LI, Filatova LP (1979a) Investigations of the diurnal and semidiurnal temperature fluctuations. Ocean Res 30:63–73Google Scholar
  50. Morozov EG, Samodurov AS, Filatova LP (1979b) Separation of semidiurnal temperature fluctuations determined by the barotropic tide and internal waves. Ocean Res 30:78–81Google Scholar
  51. Morozov EG, Nikitin SV, Filyushkin BN (1990) Generation of internal tidal waves in the vicinity of seamounts in the Western Canary Basin. Doklady AN SSSR (Earth Sci Sect). 315(6):321–323Google Scholar
  52. Morozov EG, Vlasenko VI, Demidova TA, Ledenev VV (1999) Tidal internal wave propagation over large distances in the Indian Ocean. Oceanology 39(1):42–46Google Scholar
  53. Morozov EG, Trulsen K, Velarde MG, Vlasenko VI (2002) Internal tides in the Strait of Gibraltar. J Phys Oceanogr 32:3193–3206CrossRefGoogle Scholar
  54. Morozov EG, Nechvolodov LV, Sabinin KD (2009) Beam propagation of tidal internal waves over a submarine slope of the Mascarene Ridge. Oceanology 49(6):745–752CrossRefGoogle Scholar
  55. Morozov E, Demidov A, Tarakanov R, Zenk W (2010) Abyssal channels in the Atlantic Ocean: water structure and flows. Springer, DordrechtCrossRefGoogle Scholar
  56. Morozov EG, Tarakanov RY, van Haren H (2013) Transport of AABW through the Kane Gap, tropical NE Atlantic Ocean. Ocean Sci 9:825–835. CrossRefGoogle Scholar
  57. Munk W, Phillips N (1968) Coherence and band structure of inertial motion in the sea. Rev Geophys 6:447–472CrossRefGoogle Scholar
  58. Munk WH, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1977–2010CrossRefGoogle Scholar
  59. Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134CrossRefGoogle Scholar
  60. Prinsenberg S, Rattray M (1975) Effects of continental slope and variable Brunt-Väisälä frequency on the coastal generation of internal tides. Deep-Sea Res 22:251–263Google Scholar
  61. Richtmyer RD (1957) Difference methods for initial-value problems. Interscience, NY, p 238Google Scholar
  62. Saunders PM (1994) The flux of overflow water through the Charlie-Gibbs fracture zone. J Geophys Res 99(C6):12343–12355CrossRefGoogle Scholar
  63. Tareev BA (1966) Dynamics of internal gravity waves in a continuously stratified ocean. Izv Acad Sci USSR Ser Atmos Ocean Phys 2(10):1064–1075Google Scholar
  64. Thorpe SA (1999) Fronts formed by obliquely reflecting internal waves at a sloping boundary. J Phys Oceanogr 29:2462–2467CrossRefGoogle Scholar
  65. Torgrimson GM, Hickey BM (1979) Barotropic and baroclinic tides over the continental slope and shelf off Oregon. J Phys Oceanogr 9:945–961CrossRefGoogle Scholar
  66. van Haren H, Gostiaux L, Morozov E, Tarakanov R (2014) Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys Res Lett 41:8445–8451CrossRefGoogle Scholar
  67. Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424Google Scholar
  68. Vlasenko V, Stashchuk N, Hutter K (2005) Baroclinic tides: theoretical modeling and observational evidence. Cambridge University Press, Cambridge, 351 ppGoogle Scholar
  69. Weigand JG, Farmer H, Prinsenberg S, Rattray M (1969) Effects of friction and surface tide angle of incidence on the coastal generation of internal tides. J Mar Res 27:241–259Google Scholar
  70. Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. J Phys Oceanogr 38(5):1091–1106CrossRefGoogle Scholar
  71. Wunsch C (1972) The spectrum from two years to two minutes of temperature fluctuations in the main thermocline at Bermuda. Deep-Sea Res 19(8):577–594Google Scholar
  72. Wunsch C (1975a) Deep ocean internal waves: what do we really know? J Geophys Res 80(3):339–343CrossRefGoogle Scholar
  73. Wunsch C (1975b) Internal tides in the ocean. Rev Geophys Space Phys 13(1):167–182CrossRefGoogle Scholar
  74. Wüst G (1936) Schichtung und Zirkulation des Atlantischen Ozeans, Das Bodenwasser und die Stratosphäre. In: Defant A (ed) Wissenschaftliche Ergebnisse, Deutsche Atlantische Expedition auf dem Forschungs - und Vermessungsschiff “Meteor” 1925–1927, vol 6(1). Walter de Gruyter & Co. Berlin. 411 ppGoogle Scholar
  75. Zaron ED, Egbert GD (2006) Estimating open-ocean barotropic tidal dissipation: the Hawaiian Ridge. J Phys Oceanogr 36(6):1019–1035CrossRefGoogle Scholar
  76. Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res 119:5434–5448.
  77. Zhao Z, Alford MH (2009) New altimetric estimates of mode-1 M2 internal tides in the Central North Pacific Ocean. J Phys Oceanogr 39(7):1669–1684CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Physical DepartmentShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations