Observations of Internal Tides in the Arctic Ocean

  • Eugene G. MorozovEmail author


This chapter describes the measurements of internal tides in the Arctic Ocean. Most of the regions of field measurements are located north of the critical latitude (74° 30′N) so that semidiurnal internal tides rapidly decay with the distance from the bottom slopes. The generation of internal tides is associated with the interaction of the currents of the barotropic tide with the slopes of the bottom topography. One of the most important ideas presented here is the strong generation of internal tides over submarine ridges. The chapter begins with general notes on internal tides in the Arctic region whose major part in located north of the critical latitude. Measurements of internal tides on mooring clusters confirm the well known fact that internal tides are generated over the bottom slopes. Internal tides rapidly decay with the distance from submarine slopes (74° 30′N). Strong generation of internal tides was found in the Strait of Kara Gates between the Barents and Kara seas. The existence of permanent polynyas in the Laptev Sea is associated with internal tides over the continental shelf. Properties of internal tides measured near the North Pole are described.


  1. Alexandrov VY, Martin T, Kolatshek J, Eicken H, Kreyscher M, Makshtas AP (2000) Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: results from satellite remote sensing and numerical modeling. J Geophys Res 105(C7):17143–17159CrossRefGoogle Scholar
  2. Allen JS (1975) Coastal trapped waves in a stratified ocean. J Phys Oceanogr 5(4):300–326CrossRefGoogle Scholar
  3. Atlas (1998) Joint U.S.-Russian Atlas of the Arctic Ocean: oceanography atlas for the winter and summer period (CD-ROM), Environmental Working Group. National Snow and Ice Data Center (NSIDC), Boulder, ColoradoGoogle Scholar
  4. Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338CrossRefGoogle Scholar
  5. Bannov-Baikov YL, Totubakin YY, Yakovleva AB (1989) Intra-diurnal variations in the temperature, salinity, and density of waters in the American-Asian sub-basin of the Arctic Ocean. Proc Arctic Antarct Res Inst 414:101–105Google Scholar
  6. Brandt P, Alpers W, Backhaus JO (1996) Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar images of the European ERS 1 satellite. J Geophys Res 101:14,237–14,252Google Scholar
  7. Burenkov VI, Ershova SV, Kopelevich OV, Sheberstov SV, Shevchenko VP (2001) An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner. Oceanology 41(5):622–628Google Scholar
  8. D’Azaro EA, Morehead MD (1991) Internal waves and velocity fine structure. Internal waves and velocity fine structure in the Arctic Ocean. J Geophys Res 96:12725–12738. CrossRefGoogle Scholar
  9. D’Asaro EA, Morison JH (1992) Internal waves and mixing in the Arctic Ocean. Deep-Sea Res 39(Suppl. 2):S459–S484CrossRefGoogle Scholar
  10. Dmitrenko IA, Kirillov SA, Bloshkina E, Lenn Y-D (2012) Tide-induced vertical mixing in the Laptev Sea coastal polynya. J Geophys Res 117:C00G14.
  11. Dobrovolsky AD, Zalogin BS (1982) Seas of the USSR. Moscow State University, Moscow [in Russian]Google Scholar
  12. Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204CrossRefGoogle Scholar
  13. Falahat S, Nycander J (2015) On the generation of bottom-trapped internal tides. J Phys Oceanogr 45(2):526–545CrossRefGoogle Scholar
  14. Furevik T, Foldvik A (1996) Stability at M2 critical latitude in the Barents Sea. J Geophys Res 101(C4):8823–8837Google Scholar
  15. Gjevik B, Nøst E, Straume T (1994) Model simulations of the tides in the Barents Sea. J Geophys Res 99(C2):3337–3350CrossRefGoogle Scholar
  16. Gukov AY (1999) Ecosystem of the Siberian Polynya. Nauchnyi Mir, Moscow [in Russian]Google Scholar
  17. Guthrie JD, Morison JH, Fer I (2013) Revisiting internal waves and mixing in the Arctic Ocean. J Geophys Res 118:3966–3977. CrossRefGoogle Scholar
  18. Halle C, Pinkel R (2003) Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J Geophys Res 108(C7):3210. CrossRefGoogle Scholar
  19. Hibiya T (1990) Generation mechanism of internal waves by a vertically sheared tidal flow over a sill. J Geophys Res 95:1757–1764. CrossRefGoogle Scholar
  20. Jakobsson M, Cherkis NZ, Woodward J, Macnab R, Coakley B (2000) New grid of Arctic bathymetry aids scientists and mapmakers. EOS Trans AGU 81(9):89–96CrossRefGoogle Scholar
  21. Janout MA, Lenn Y-D (2014) Semidiurnal tides on the Laptev Sea shelf with implications for shear and vertical mixing. J Phys Oceanogr 44(1):202–219CrossRefGoogle Scholar
  22. Johnson MA, Polyakov IV (2001) The Laptev Sea as a source for recent Arctic Ocean salinity changes. Geophys Res Lett 28(10):2017–2020CrossRefGoogle Scholar
  23. Kagan BA, Timofeev AA (2015) Modeling of the stationary circulation and semidiurnal surface and internal tides in the Strait of Kara Gates. Fundam Appl Hydrophys 8(3):72–79Google Scholar
  24. Klepikov VV, Sarukhanyan EI, Smirnov NP (1985) Specific features of hydrology: the Arctic and Southern Oceans. Nauka, Leningrad, pp 29–33 [in Russian]Google Scholar
  25. Konyaev KV (2000) Internal tide at the critical latitude. Izv Atmos Ocean Phys 36(3):363–375Google Scholar
  26. Konyaev KV, Sabinin KD (1992) Waves inside the Ocean. S.-Petersburg, Gidrometeoizdat, 272 pp [in Russian]Google Scholar
  27. Kozubskaya GI, Konyaev KV, Plueddemann A, Sabinin KD (1999) Internal waves at the slope of Bear Island from the data of the barents sea polar front experiment (BSPF-92). Oceanology 39(2):147–154Google Scholar
  28. Krauss W (1966) Interne Wellen. Gebrüder Borntraeger, Berlin-NikolaseeGoogle Scholar
  29. Kudryavtsev V, Kozlov I, Chapron B, Johannessen JA (2014) Quad-polarization SAR features of ocean currents. J Geophys Res 119(9): 6046–6065.
  30. Kurkina OE, Talipova TG (2011) Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards Earth System Studies, pp 981–986Google Scholar
  31. LeBlond PH, Mysak LA (1978) Waves in the Ocean. Elsevier Oceanographic Series. Elsevier, Amsterdam, p 602Google Scholar
  32. Levine MD (1990) Internal waves under the Arctic pack ice during the Arctic Internal Wave Experiment: the coherence structure. J Geophys Res 95:7347–7357. CrossRefGoogle Scholar
  33. Levine MD, Paulson CA, Morison JH (1985) Internal waves in the Arctic Ocean: comparison with lower latitude observations. J Phys Oceanogr 15:800–809CrossRefGoogle Scholar
  34. Morozov EG, Paka VT (2010) Internal waves in a high-latitude region. Oceanology 50(5):668–674CrossRefGoogle Scholar
  35. Morozov EG, Pisarev SV (2002) Internal tides at the Arctic latitudes (numerical experiments). Oceanology 42(2):153–161Google Scholar
  36. Morozov EG, Pisarev SV (2004) Internal waves and polynya formation in the Laptev Sea. Dokl Earth Sci 398(7):983–986Google Scholar
  37. Morozov EG, Trulsen K, Velarde MG, Vlasenko VI (2002) Internal tides in the strait of Gibraltar. J Phys Oceanogr 32:3193–3206CrossRefGoogle Scholar
  38. Morozov EG, Neiman VG, Shcherbinin AD (2003a) Internal tide in the Kara Strait. Dokl Earth Sci 393(9):1312–1314Google Scholar
  39. Morozov EG, Parrilla-Barrera G, Velarde MG, Scherbinin AD (2003b) The Straits of Gibraltar and Kara Gates: a comparison of internal tides. Oceanol Acta 26(3):231–241CrossRefGoogle Scholar
  40. Morozov EG, Pisarev SV, Neiman VG, Erofeeva SY (2003c) Internal tidal waves in the Barents Sea. Dokl Earth Sci 393(8):1124–1126Google Scholar
  41. Morozov EG, Paka VT, Bakhanov VV (2008) Strong internal tides in the Kara Gates Strait. Geophys Res Lett 35:L16603CrossRefGoogle Scholar
  42. Morozov EG, Kozlov IE, Shchuka SA, Frey DI (2017) Internal tide in the Kara Gates Strait. Oceanology 57(1):8–18CrossRefGoogle Scholar
  43. Nansen F (1902) Oceanography of the North Pole basin: Norwegian North Pole expedition, 1893–1896. Scientific Results, vol 3(9). Longmans and Green, Toronto, 1–427 pGoogle Scholar
  44. Padman L, Plueddemann A, Muench R, Pinkel R (1992) Diurnal tides near the Yermak Plateau. J Geophys Res 97:12639–12652CrossRefGoogle Scholar
  45. Parsons AR, Bourke RH, Muench RD, Chiu C-S, Lynch JF, Miller JH, Plueddemann AJ, Pawlowicz R (1996) The Barents Sea polar front in summer. J Geophys Res 101(C6):14201–14221CrossRefGoogle Scholar
  46. Pisarev SV (1988) Experimental frequency spectra of internal waves in an ice-covered high-latitude basin. Oceanology 28(5):577–580Google Scholar
  47. Pisarev SV (1991) Some measurements of the spatial and temporal characteristics of internal waves in an ice-covered high-latitude basin. Oceanology 31(1):42–46Google Scholar
  48. Pisarev SV (1992) Spatial and temporal characteristics of internal waves at the edge of the continental shelf in the Arctic basin. Oceanology 32(5):579–583Google Scholar
  49. Pisarev SV (1996) Low-frequency internal waves near the shelf edge of the Arctic basin. Oceanology 36(6):771–778Google Scholar
  50. Plueddemann AJ (1992) Internal wave observations from the Arctic Environmental Drifting Buoy. J Geophys Res 97:12619–12638CrossRefGoogle Scholar
  51. Plueddemannn AJ, Krishfield R, Takizawa T, Hatakeyama K, Honjo S (1998) Upper ocean velocities in the Beaufort Gyre. Geophys Res Lett 25(2):183–186CrossRefGoogle Scholar
  52. Robertson R (2001) Internal tides and baroclinicity in the southern Weddell Sea 2. Effects of the critical latitude and stratification. J Geophys Res 106(C11):27017–27034CrossRefGoogle Scholar
  53. Rodden WP (1959) Aerodynamic influence coefficients from strip theory. J Aerospace Sci 26 (12):833–834Google Scholar
  54. Sabinin KD, Stanovoi VV (2002) Intense semidiurnal internal waves in the Kara Sea. In: Surface and Internal Waves in the Arctic Seas. Gidrometeoizdat, St. Petersburg, pp 265–279 [in Russian]Google Scholar
  55. Smith SD, Muench RD, Pease CJ (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95(C6):9461–9479CrossRefGoogle Scholar
  56. Støylen E, Fer I (2014) Tidally induced internal motion in an Arctic fjord, Nonlin. Process Geophys 21:87–100. CrossRefGoogle Scholar
  57. Timmermans M-L, Melling H, Rainville L (2007) Dynamics in the deep Canada Basin, Arctic Ocean, inferred by thermistor-chain time series. J Phys Oceanogr 37(4):1066–1076CrossRefGoogle Scholar
  58. Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424Google Scholar
  59. Vlasenko V, Hutter K (2002) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr 32:1779–1793CrossRefGoogle Scholar
  60. Vlasenko V, Stashchuk N, Hutter K (2002) Water exchange in fjords induced by tidally generated internal lee waves. Dyn Atmos Oceans 35(1):63–83CrossRefGoogle Scholar
  61. Vlasenko V, Stashchuk N, Hutter K, Sabinin K (2003) Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Res 50:317–338CrossRefGoogle Scholar
  62. Vlasenko V, Stashchuk N, Hutter K (2005) Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, Cambridge, 351 ppGoogle Scholar
  63. Zubov NN (1932) Hydrological studies of the Marine Scientific Institute in the southwestern part of the Barents Sea in summer 1928 on board the R/V “Persey”. Proc State Oceanogr Inst 2(4):3–80 [in Russian]Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Physical DepartmentShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations