Skip to main content

An Improved Fuzzy Time Series Forecasting Model

Part of the Studies in Computational Intelligence book series (SCI,volume 760)

Abstract

This model is developed from the model of Abbasov and Mamedova (2003) in which the parameters are investigated by methods and algorithm to obtain the most suitable values for each data set. The experiments on Azerbaijan’s population, Vietnam’s population and Vietnam’s rice production demonstrate the feasibility and applicability of the proposed methods.

Keywords

  • Fuzzy time series
  • Abbasov-Mamedova
  • Population
  • GDP
  • Vietnam

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-73150-6_38
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-73150-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  • Abbasov, A.M., Mamedova, M.H.: Application of fuzzy time series to population forecasting. Vienna Univ. Technol. 12, 545–552 (2003)

    Google Scholar 

  • Box, G.E.P., Jenkins, G.M.: Time series analysis: forecasting and control. Holden-Day Series in Time Series Analysis, Revised edn. Holden-Day, San Francisco (1976)

    Google Scholar 

  • Chen, S.M.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 81(3), 311–319 (1996)

    CrossRef  Google Scholar 

  • Chen, S.M., Hsu, C.C.: A new method to forecast enrollments using fuzzy time series. Int. J. Appl. Sci. Eng. 2(3), 234–244 (2004)

    Google Scholar 

  • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  • Durbin, J.: The fitting of time-series models. Revue de l’Institut International de Statistique 28(3), 233–244 (1960)

    CrossRef  MATH  Google Scholar 

  • Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982). Journal of the Econometric Society

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Galton, F.: Co-relations and their measurement, chiefly from anthropometric data. Proc. Roy. Soc. Lond. 45(273–279), 135–145 (1888)

    CrossRef  Google Scholar 

  • Ghazali, R., Hussain, A.J., Al-Jumeily, D., Lisboa, P.: Time series prediction using dynamic ridge polynomial neural networks. In: 2009 Second International Conference on Developments in eSystems Engineering (DESE), pp. 354–363. IEEE (2009)

    Google Scholar 

  • Gupta, S., Wang, L.P.: Stock forecasting with feedforward neural networks and gradual data sub-sampling. Aust. J. Intell. Inf. Process. Syst. 11(4), 14–17 (2010)

    Google Scholar 

  • Huarng, K.: Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Syst. 123(3), 369–386 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Lewis, P.A.W., Stevens, J.G.: Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). J. Am. Stat. Assoc. 86(416), 864–877 (1991)

    CrossRef  MATH  Google Scholar 

  • de Oliveira, J.F.L., Ludermir, T.B.: A distributed PSO-ARIMA-SVR hybrid system for time series forecasting. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3867–3872. IEEE (2014)

    Google Scholar 

  • Park, D.C.: A time series data prediction scheme using bilinear recurrent neural network. In: 2010 International Conference on Information Science and Applications (ICISA), pp 1–7. IEEE (2010)

    Google Scholar 

  • Pearson, K.: Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philos. Trans. Roy. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 187, 253–318 (1896)

    CrossRef  Google Scholar 

  • Ren, Y., Suganthan, P.N., Srikanth, N., Amaratunga, G.: Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 367, 1078–1093 (2016)

    CrossRef  Google Scholar 

  • Sasu, A.: An application of fuzzy time series to the Romanian population. Bulletin Transilv. Univ. Brasov 3, 52 (2010)

    MATH  Google Scholar 

  • Singh, S.R.: A computational method of forecasting based on fuzzy time series. Math. Comput. Simul. 79(3), 539–554 (2008). https://doi.org/10.1016/j.matcom.2008.02.026

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time series part I. Fuzzy Sets Syst. 54(1), 1–9 (1993)

    Google Scholar 

  • Teo, K., Wang, L., Lin, Z.: Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization. In: Computational Science-ICCS 2001, pp 310–317 (2001)

    Google Scholar 

  • Tseng, F.M., Tzeng, G.H.: A fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets Syst. 126(3), 367–376 (2002). https://doi.org/10.1016/S0165-0114(01)00047-1. http://www.sciencedirect.com/science/article/pii/S0165011401000471

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Wang, L., Fu, X.: Data Mining with Computational Intelligence. Springer Science & Business Media, New York (2006)

    Google Scholar 

  • Wang, L., Teo, K.K., Lin, Z.: Predicting time series with wavelet packet neural networks. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2001. vol 3, pp 1593–1597. IEEE (2001)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    CrossRef  MATH  Google Scholar 

  • Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp 5653–5656. IEEE (2011)

    Google Scholar 

  • Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    CrossRef  MATH  Google Scholar 

  • Zhu, M., Wang, L.: Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thao Nguyen-Trang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Che-Ngoc, H., Vo-Van, T., Huynh-Le, QC., Ho, V., Nguyen-Trang, T., Chu-Thi, MT. (2018). An Improved Fuzzy Time Series Forecasting Model. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-73150-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73150-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73149-0

  • Online ISBN: 978-3-319-73150-6

  • eBook Packages: EngineeringEngineering (R0)