An Improved Fuzzy Time Series Forecasting Model

  • Ha Che-Ngoc
  • Tai Vo-Van
  • Quoc-Chanh Huynh-Le
  • Vu Ho
  • Thao Nguyen-TrangEmail author
  • Minh-Tuyet Chu-Thi
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 760)


This model is developed from the model of Abbasov and Mamedova (2003) in which the parameters are investigated by methods and algorithm to obtain the most suitable values for each data set. The experiments on Azerbaijan’s population, Vietnam’s population and Vietnam’s rice production demonstrate the feasibility and applicability of the proposed methods.


Fuzzy time series Abbasov-Mamedova Population GDP Vietnam 


  1. Abbasov, A.M., Mamedova, M.H.: Application of fuzzy time series to population forecasting. Vienna Univ. Technol. 12, 545–552 (2003)Google Scholar
  2. Box, G.E.P., Jenkins, G.M.: Time series analysis: forecasting and control. Holden-Day Series in Time Series Analysis, Revised edn. Holden-Day, San Francisco (1976)Google Scholar
  3. Chen, S.M.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 81(3), 311–319 (1996)CrossRefGoogle Scholar
  4. Chen, S.M., Hsu, C.C.: A new method to forecast enrollments using fuzzy time series. Int. J. Appl. Sci. Eng. 2(3), 234–244 (2004)Google Scholar
  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  6. Durbin, J.: The fitting of time-series models. Revue de l’Institut International de Statistique 28(3), 233–244 (1960)CrossRefzbMATHGoogle Scholar
  7. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982). Journal of the Econometric SocietyMathSciNetCrossRefzbMATHGoogle Scholar
  8. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Galton, F.: Co-relations and their measurement, chiefly from anthropometric data. Proc. Roy. Soc. Lond. 45(273–279), 135–145 (1888)CrossRefGoogle Scholar
  10. Ghazali, R., Hussain, A.J., Al-Jumeily, D., Lisboa, P.: Time series prediction using dynamic ridge polynomial neural networks. In: 2009 Second International Conference on Developments in eSystems Engineering (DESE), pp. 354–363. IEEE (2009)Google Scholar
  11. Gupta, S., Wang, L.P.: Stock forecasting with feedforward neural networks and gradual data sub-sampling. Aust. J. Intell. Inf. Process. Syst. 11(4), 14–17 (2010)Google Scholar
  12. Huarng, K.: Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Syst. 123(3), 369–386 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Lewis, P.A.W., Stevens, J.G.: Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). J. Am. Stat. Assoc. 86(416), 864–877 (1991)CrossRefzbMATHGoogle Scholar
  14. de Oliveira, J.F.L., Ludermir, T.B.: A distributed PSO-ARIMA-SVR hybrid system for time series forecasting. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3867–3872. IEEE (2014)Google Scholar
  15. Park, D.C.: A time series data prediction scheme using bilinear recurrent neural network. In: 2010 International Conference on Information Science and Applications (ICISA), pp 1–7. IEEE (2010)Google Scholar
  16. Pearson, K.: Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philos. Trans. Roy. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 187, 253–318 (1896)CrossRefGoogle Scholar
  17. Ren, Y., Suganthan, P.N., Srikanth, N., Amaratunga, G.: Random vector functional link network for short-term electricity load demand forecasting. Inf. Sci. 367, 1078–1093 (2016)CrossRefGoogle Scholar
  18. Sasu, A.: An application of fuzzy time series to the Romanian population. Bulletin Transilv. Univ. Brasov 3, 52 (2010)zbMATHGoogle Scholar
  19. Singh, S.R.: A computational method of forecasting based on fuzzy time series. Math. Comput. Simul. 79(3), 539–554 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  20. Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time series part I. Fuzzy Sets Syst. 54(1), 1–9 (1993)Google Scholar
  21. Teo, K., Wang, L., Lin, Z.: Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization. In: Computational Science-ICCS 2001, pp 310–317 (2001)Google Scholar
  22. Tseng, F.M., Tzeng, G.H.: A fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets Syst. 126(3), 367–376 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  23. Wang, L., Fu, X.: Data Mining with Computational Intelligence. Springer Science & Business Media, New York (2006)Google Scholar
  24. Wang, L., Teo, K.K., Lin, Z.: Predicting time series with wavelet packet neural networks. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2001. vol 3, pp 1593–1597. IEEE (2001)Google Scholar
  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  26. Zecchin, C., Facchinetti, A., Sparacino, G., De Nicolao, G., Cobelli, C.: A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp 5653–5656. IEEE (2011)Google Scholar
  27. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)CrossRefzbMATHGoogle Scholar
  28. Zhu, M., Wang, L.: Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ha Che-Ngoc
    • 1
  • Tai Vo-Van
    • 2
  • Quoc-Chanh Huynh-Le
    • 1
  • Vu Ho
    • 3
  • Thao Nguyen-Trang
    • 1
    • 4
    Email author
  • Minh-Tuyet Chu-Thi
    • 1
    • 2
    • 3
    • 4
  1. 1.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Department of MathematicsCan Tho UniversityCan ThoVietnam
  3. 3.Faculty of Mathematical EconomicsBanking University of Ho Chi Minh CityHo Chi Minh CityVietnam
  4. 4.Division of Computational Mathematics and Engineering, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations