Skip to main content

Confidence Intervals for the Coefficient of Variation of the Delta-Lognormal Distribution

  • Conference paper
  • First Online:
Econometrics for Financial Applications (ECONVN 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 760))

Included in the following conference series:

Abstract

This paper proposes confidence intervals for the coefficient of variation of the delta-lognormal distribution which are based on the generalized confidence interval (GCI) method, it is compared with the modified Fletcher method. The coverage probabilities and the expected lengths are used for assessing the performance of these confidence interval. Simulation results show that the GCI method perform best in term of the coverage probability and expected length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aitchison, J.: On the distribution of a positive random variable having a discrete probability and mass at the origin. J. Am. Stat. Assoc. 50(271), 901–908 (1955)

    MathSciNet  MATH  Google Scholar 

  2. Aitchison, J., Brown, J.A.C.: The Lognormal Distribution. Cambridge University Press, Toronto (1957)

    MATH  Google Scholar 

  3. Anirban, D.: Asymptotic Theory of Statistics and Probability Theory of Statistics and Probability. Springer, New York (2008)

    MATH  Google Scholar 

  4. Buntao, N., Niwitpong, S.: Confidence intervals for the difference of coefficients of variation for lognormal distributions and delta-lognormal distributions. Appl. Math. Sci. 6(134), 6691–6704 (2012)

    MathSciNet  Google Scholar 

  5. Buntao, N., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of delta-lognormal distribution. Appl. Math. Sci. 7(77), 3811–3818 (2013)

    MathSciNet  Google Scholar 

  6. Crow, E.L., Shimizu, K.: Lognormal Distribulations: Theory and Applicatins. CRC Press, New York (1987)

    Google Scholar 

  7. Fletcher, D.: Confidence intervals for the mean of the delta-lognormal distribution. Environ. Ecol. Stat. 15(2), 175–189 (2008)

    Article  MathSciNet  Google Scholar 

  8. Krishnamoorthy, K., Mathew, T.: Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals. J. Stat. Plan. Infer. 115(1), 103–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kvanli, A.H., Shen, Y.K., Deng, L.Y.: Construction of confidence intervals for the mean of a population containing many zero values. J. Bus. Econ. Stat. 16(3), 362–368 (2012)

    Google Scholar 

  10. Lo, N.C.-H., Jacobson, L.D., Squire, J.L.: Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49(12), 2515–2526 (1992)

    Article  Google Scholar 

  11. Mahmoudvand, R., Hassani, H.: Two new confidence intervals for the coefficient of variation in a normal distribution. J. Appl. Stat. 36(4), 429–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Myers, R.A., Pepin, P.: The robustness of lognormal-based estimators of abundance. Biometrics 46(4), 1185–1192 (1990)

    Article  Google Scholar 

  13. Pennington, M.: Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39(1), 281–286 (1983)

    Article  Google Scholar 

  14. Sangnawakij, P., Niwitpong, S.: Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stat. Simul. Comput. 46(8), 6618–6630 (2017)

    Article  Google Scholar 

  15. Sangnawakij, P., Niwitpong, S., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of the gamma distribution, Lecture Notes in Computer Science, pp. 193–203. Springer, Cham (2015)

    Google Scholar 

  16. Smith, S.J.: Evaluating the efficiency of the \(\varDelta \)-distribution mean estimator. Biometrics 44(2), 485–493 (1988)

    Article  Google Scholar 

  17. Smith, S.J.: Use of statistical models for the estimation of abundance from groundfish trawl survey data. Can. J. Fish. Aquat. Sci. 47(5), 894–903 (1990)

    Article  Google Scholar 

  18. Thangjai, W., Niwitpong, S.: Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. Cogent Math. 4, 1315880 (2017). https://doi.org/10.1080/23311835.2017.1315880

    Article  Google Scholar 

  19. Tian, L.: Inferences on the common coeffieient of variation. Stat. Med. 24(14), 2213–2220 (2005)

    Article  MathSciNet  Google Scholar 

  20. Tian, L., Wu, J.: Confidence intervals for the mean of lognormal data with excess zeros. Biom. J. Biom. Z. 48(1), 149–156 (2006)

    Article  MathSciNet  Google Scholar 

  21. Venables, W.N., Smith, D.M.: An Introduction to R, 2nd edn. Network Theory Ltd., Bristol (2009)

    Google Scholar 

  22. Weerahandi, S.: Generalized confidence intervals. J. Am. Stat. Assoc. 88(423), 899–905 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wong, A.C.M., Wu, J.: Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models. J. Stat. Plan. Infer. 104(1), 73–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wongkhao, A., Niwitpong, S., Niwitpong, S.: Confidence intervals for the raio of two independent coefficients of variation of normal distribution. Far East J. Math. Sci. (FJMS) 98(6), 741–757 (2015)

    Article  MATH  Google Scholar 

  25. Wu, W.-H., Hsieh, H.-N.: Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data. J. Appl. Stat. 41(7), 1471–1485 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank referees for their important comments and recommendations, leading to many improvements in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noppadon Yosboonruang .

Editor information

Editors and Affiliations

A Appendix: Variance of \(\hat{\varvec{\xi } }\)

A Appendix: Variance of \(\hat{\varvec{\xi } }\)

By Eq. (11), we have

$$\begin{aligned} \begin{aligned} \hat{\xi }&=\frac{1}{2}\ln \left[ \frac{\exp \left( \hat{\sigma }^{2} \right) -\hat{\delta }}{\hat{\delta }} \right] \\&=\frac{1}{2}\left[ \ln \left( \exp \left( \hat{\sigma }^{2} \right) -\hat{\delta }\right) -\ln \left( \hat{\delta } \right) \right] \\&=\frac{1}{2}\left\{ \hat{\sigma }^{2}+\ln \left[ 1-\frac{\hat{\delta }}{\exp \left( \hat{\sigma }^{2} \right) } \right] -\ln \left( \hat{\delta } \right) \right\} . \end{aligned} \end{aligned}$$

Since \(\hat{\delta }\in \left[ 0,1 \right] \) and \(\hat{\sigma }^{2}>0\), we can compute the limit

$$\begin{aligned} \lim _{\exp \left( \hat{\sigma }^{2} \right) \rightarrow \infty }\left[ \frac{1}{2}\left\{ \hat{\sigma }^{2}+\ln \left[ 1-\frac{\hat{\delta }}{\exp \left( \hat{\sigma }^{2} \right) } \right] -\ln \left( \hat{\delta } \right) \right\} \right] =\frac{1}{2}\left( \hat{\sigma }^{2}-\ln \left( \hat{\delta } \right) \right) . \end{aligned}$$

Now, we will find the variance of \(\hat{\xi }\). Let \(\mathbf T =T_{1},T_{2},...,T_{n}\) be the random variables defined as

$$\begin{aligned} T_{i}= {\left\{ \begin{array}{ll} 1 &{};X_{i}>0 \\ 0 &{};X_{i}=0. \end{array}\right. } \end{aligned}$$

Let \(n_{1}\) have a truncated binomial distribution, \(n_{1}=\sum _{i=1}^{n}T_{i}\), and we consider repeated sampling under the constraint \(n_{1}>1\), as described in [7]. Then,

$$\begin{aligned} \begin{aligned} P\left( n_{1}=y \right)&=\frac{1}{1-\left( 1-\delta \right) ^{n}-n\delta \left( 1-\delta \right) ^{n-1}}\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y} \\&=\frac{1}{1-\left\{ \left( 1-\delta \right) ^{n-1} \left[ 1+\left( n-1 \right) \delta \right] \right\} }\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y} \\&=\frac{1}{1-ab}\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y} \quad ;y=2,3,...,n \\ \end{aligned} \end{aligned}$$

where \(a=\left( 1-\delta \right) ^{n-1}\) and \(b=1+\left( n-1 \right) \delta \). The variance of \(\hat{\xi }\) is given by

$$\begin{aligned} V\left( \hat{\xi } \right) =V_\mathbf{T }\left[ E\left( \hat{\xi } \mid \mathbf T \right) \right] +E_\mathbf{T }\left[ V\left( \hat{\xi } \mid \mathbf T \right) \right] . \end{aligned}$$

Consider,

$$\begin{aligned} \begin{aligned} E\left( \hat{\xi } \mid \mathbf T \right)&=E\left[ \frac{1}{2}\left( \hat{\sigma }^{2}-\ln \left( \hat{\delta } \right) \right) \mid \mathbf T \right] \\&=\frac{1}{2}\left[ E\left( \hat{\sigma }^{2} \mid \mathbf T \right) - E\left( \ln \left( \hat{\delta } \right) \mid \mathbf T \right) \right] \\&=\frac{1}{2}\left( \sigma ^{2}-\ln \left( \hat{\delta } \right) \right) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} V\left( \hat{\xi } \mid \mathbf T \right)&=V\left[ \frac{1}{2}\left( \hat{\sigma }^{2}-\ln \left( \hat{\delta } \right) \right) \mid \mathbf T \right] \\&=\frac{1}{4}\left[ V\left( \hat{\sigma }^{2} \mid \mathbf T \right) + V\left( \ln \left( \hat{\delta } \right) \mid \mathbf T \right) \right] \\&=\frac{\sigma ^{4}}{2\left( n_{1}-1 \right) }. \end{aligned} \end{aligned}$$

Thus, by delta method we have

$$\begin{aligned} \begin{aligned} V\left( \hat{\xi } \right)&=V_\mathbf{T }\left[ \frac{1}{2}\left( \sigma ^{2}-\ln \left( \hat{\delta } \right) \right) \right] +E_\mathbf{T }\left[ \frac{\sigma ^{4}}{2\left( n_{1} -1\right) } \right] \\&=\frac{1}{4}\left[ V_\mathbf{T }\left( \sigma ^{2} \right) +V_\mathbf{T }\left( \ln \left( \hat{\delta } \right) \right) \right] +\frac{1}{2}E_\mathbf{T }\left[ \frac{\sigma ^{4}}{n_{1}-1} \right] \\&=\frac{1}{4}V_\mathbf{T }\left( \ln \left( \hat{\delta } \right) \right) +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left[ \frac{1}{n_{1}-1} \right] \\&\approx \frac{1}{4}\left\{ \frac{V_\mathbf{T }\left( \hat{\delta } \right) }{\left[ E_\mathbf{T }\left( \hat{\delta } \right) \right] ^{2}} \right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) \\&=\frac{1}{4}\left\{ \frac{V_\mathbf{T }\left( n_{1} \right) }{\left[ E_\mathbf{T }\left( n_{1} \right) \right] ^{2}} \right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) \\&=\frac{1}{4}\left\{ \frac{E_\mathbf{T }\left( n_{1}^{2} \right) -\left[ E_\mathbf{T }\left( n_{1} \right) \right] ^{2}}{\left[ E_\mathbf{T }\left( n_{1} \right) \right] ^{2}} \right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) \\&=\frac{1}{4}\left\{ \frac{E_\mathbf{T }\left( n_{1}^{2} \right) }{\left[ E_\mathbf{T }\left( n_{1} \right) \right] ^{2}}-1 \right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) . \end{aligned} \end{aligned}$$

Now, we find

$$\begin{aligned} \begin{aligned} E_\mathbf{T }\left( n_{1} \right)&=\frac{1}{1-ab}\sum _{y=2}^{n}y\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y}\\&=\frac{1}{1-ab}\left\{ \sum _{y=0}^{n}y\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y} -\sum _{y=0}^{1}y\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y}\right\} \\&=\frac{n\delta \left( 1-a \right) }{1-ab} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} E_\mathbf{T }\left( n_{1}^{2} \right)&=\frac{1}{1-ab}\sum _{y=2}^{n}y^{2}\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y}\\&=\frac{1}{1-ab}\left\{ \sum _{y=0}^{n}y^{2}\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y} -\sum _{y=0}^{1}y^{2}\left( {\begin{array}{c}n\\ y\end{array}}\right) \delta ^{y}\left( 1-\delta \right) ^{n-y}\right\} \\&=\frac{n\delta \left( b-a \right) }{1-ab}. \end{aligned} \end{aligned}$$

Hence we have

$$\begin{aligned} \begin{aligned} V\left( \hat{\xi } \right)&=\frac{1}{4}\left\{ \frac{\frac{n\delta \left( b-a \right) }{1-ab}}{\left[ \frac{n\delta \left( 1-a \right) }{1-ab} \right] ^{2}} -1\right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) \\&=\frac{1}{4}\left\{ \frac{\left( b-a \right) \left( 1-ab \right) }{n\delta \left( 1-a \right) ^{2} } -1\right\} +\frac{\sigma ^{4}}{2}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) . \end{aligned} \end{aligned}$$

By normal theory results for the sample variance, we can obtain unbiased estimate for \(\sigma ^{4}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) \),

$$\begin{aligned} E\left( \frac{\hat{\sigma }^{4}}{n_{1}-1} \right) =E_\mathbf{T }\left\{ E\left( \frac{\hat{\sigma }^{4}}{n_{1}-1} \mid \mathbf T \right) \right\} =\sigma ^{4}E_\mathbf{T }\left( \frac{1}{n_{1}-1} \right) . \end{aligned}$$

Therefore, an approximately unbiased estimate of \(V\left( \hat{\xi }\right) \) is

$$\begin{aligned} \hat{V}\left( \hat{\xi } \right) \approx \frac{\left( \hat{b}-\hat{a} \right) \left( 1-\hat{a}\hat{b} \right) -n_{1}\left( 1-\hat{a} \right) ^{2}}{4n_{1}\left( 1-\hat{a} \right) ^{2}}+\frac{\hat{\sigma }^{4} }{2\left( n_{1}-1 \right) } \end{aligned}$$

where \(\hat{a}=\left( 1-\hat{\delta } \right) ^{n-1}\) and \(\hat{b}=1+\left( n-1 \right) \hat{\delta }\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yosboonruang, N., Niwitpong, SA., Niwitpong, S. (2018). Confidence Intervals for the Coefficient of Variation of the Delta-Lognormal Distribution. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-73150-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73150-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73149-0

  • Online ISBN: 978-3-319-73150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics