Advertisement

Optical Spectroscopy of Membrane Protein/Amphipol Complexes

  • Jean-Luc Popot
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Summary

Most optical spectroscopy approaches can be applied to membrane protein/amphipol (MP/APol) complexes, namely UV-visible absorbance spectroscopy, light scattering, circular dichroism, static and time-resolved fluorescence measurements, fluorescence quenching and Förster resonance energy transfer studies, surface plasmon resonance measurements, etc. A notable exception is infrared absorbance studies in the peptide bond absorbance bands. Indeed, most APols comprise amide bonds, in which case absorbance spectroscopy studies of APol-trapped MPs at the peptide bond wavelengths have proven intractable. Resonance Raman studies however are possible, as well as surface-enhanced Raman spectroscopy.

A large number of APols carrying fluorescent labels have been developed, opening the way to a vast range of applications, from the study of the composition, organization, and dynamics of MP/APol complexes to topological and conformational studies of MPs and to imaging of the distribution and elimination of APols in cell cultures and live animals.

References

  1. Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.CrossRefGoogle Scholar
  2. Cantor, C.R., Schimmel, P.R. (1980) Biophysical Chemistry. Part II: Techniques for the study of biological structure and function. W.H. Freeman and company, San Francisco, 846 p.Google Scholar
  3. Catoire, L.J., Damian, M., Giusti, F., Martin, A., van Heijenoort, C., Popot, J.-L., Guittet, E., Banères, J.-L. (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132:9049–9057.CrossRefGoogle Scholar
  4. Charvolin, D., Perez, J.-B., Rouvière, F., Giusti, F., Bazzacco, P., Abdine, A., Rappaport, F., Martinez, K.L., Popot, J.-L. (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc. Natl. Acad. Sci. USA 106:405–410.CrossRefADSGoogle Scholar
  5. Charvolin, D., Picard, M., Huang, L.-S., Berry, E.A., Popot, J.-L. (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. J. Membr. Biol. 247:981–996.CrossRefGoogle Scholar
  6. Craig, E.A., Gambill, B.D., Nelson, R.J. (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57:402–414.Google Scholar
  7. Cuevas Arenas, R., Danielczak, B., Martel, A., Porcar, L., Breyton, C., Ebel, C., Keller, S. (2017) Fast collisional lipid transfer among polymer-bounded nanodiscs. Sci. Rep. 7:45875.CrossRefADSGoogle Scholar
  8. Dahmane, T. (2007) Protéines membranaires et amphipols : stabilisation, fonction, renaturation, et développement d'amphipols sulfonatés pour la RMN des solutions. Thèse de Doctorat, Université Paris-7, Paris, 229 p.Google Scholar
  9. Dahmane, T., Damian, M., Mary, S., Popot, J.-L., Banères, J.-L. (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521.CrossRefGoogle Scholar
  10. Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.CrossRefGoogle Scholar
  11. Della Pia, E.A., Holm, J., Lloret, N., Le Bon, C., Popot, J.-L., Zoonens, M., Nygård, J., Martinez, K.L. (2014a) A step closer to membrane protein multiplexed nano-arrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853.CrossRefGoogle Scholar
  12. Della Pia, E.A., Westh Hansen, R., Zoonens, M., Martinez, K.L. (2014b) Functionalized amphipols: A versatile toolbox suitable for applications of membrane proteins in synthetic biology. J. Membr. Biol. 247:815–826.CrossRefGoogle Scholar
  13. Duarte, A.M.S., Wolfs, C.J.A.M., Koehorsta, R.B.M., Popot, J.-L., Hemminga, M.A. (2008) Solubilization of V-ATPase transmembrane peptides by amphipol A8-35. J. Peptide Chem. 14:389–393.Google Scholar
  14. Feinstein, H.E., Tifrea, D., Sun, G., Popot, J.-L., de la Maza, L.M., Cocco, M.J. (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J. Membr. Biol. 247:1053–1065.CrossRefGoogle Scholar
  15. Fernandez, A., Le Bon, C., Baumlin, N., Giusti, F., Crémel, G., Popot, J.-L., Bagnard, D. (2014) In vivo characterization of the biodistribution profile of amphipols J. Membr. Biol. 247:1043–1051.CrossRefGoogle Scholar
  16. Giusti, F., Popot, J.-L., Tribet, C. (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: A study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380.CrossRefGoogle Scholar
  17. Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.CrossRefADSGoogle Scholar
  18. Gohon, Y., Vindigni, J.-D., Pallier, A., Wien, F., Celia, H., Giuliani, A., Tribet, C., Chardot, T., Briozzo, P. (2011) High water solubility and fold in amphipols of proteins with large hydrophobic regions: Oleosins and caleosin from seed lipid bodies. Biochim. Biophys. Acta 1808:706–716.CrossRefGoogle Scholar
  19. Gulati, S., Jamshad, M., Knowles, T.J., Morrison, K.A., Downing, R., Cant, N., Collins, R., Koenderink, J.B., Ford, R.C., Overduin, M., Kerr, I.D., Dafforn, T.R., Rothnie, A.J. (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461:269–278.CrossRefGoogle Scholar
  20. Henglein, A., Meisel, D. (1998) Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles. J. Phys. Chem. 102:8364–8366.CrossRefGoogle Scholar
  21. Heyn, M.P., Bauer, P.-J., Dencher, N.A. (1975) A natural CD label to probe the structure of the purple membrane from Halobacterium halobium by means of exciton coupling effects. Biochem. Biophys. Res. Commun. 67:897–903.CrossRefGoogle Scholar
  22. Jamshad, M., Charlton, J., Lin, Y.-P., Routledge, S.J., Bawa, Z., Knowles, T.J., Overduin, M., Dekker, N., Dafforn, T.R., Bill, R.M., Poyner, D.R., Wheatley, M. (2015a) G protein-coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosc. Rep. 35:e00188.CrossRefGoogle Scholar
  23. Jamshad, M., Grimard, V., Idini, I., Knowles, T.J., Dowle, M.R., Schofield, N., Sridhar, P., Lin, Y., Finka, R., Wheatley, M., Thomas, O.R.T., Palmer, R.E., Overduin, M., Govaerts, C., Ruysschaert, J.-M., Edler, K.J., Dafforn, T.R. (2015b) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res. 8:774–789.CrossRefGoogle Scholar
  24. Knowles, T.J., Finka, R., Smith, C., Lin, Y.-P., Dafforn, T., Overduin, M. (2009) Membrane proteins solubilized intact in lipid-containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131:7484–7485.CrossRefGoogle Scholar
  25. Kraft, T.E., Hresko, R.C., Hruz, P.W. (2015) Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4. Protein Sci. 24:2008–2019.CrossRefGoogle Scholar
  26. Kyrychenko, A., Rodnin, M.V., Vargas, M.U., Sharma, S.K., Durand, G., Pucci, B., Popot, J.-L., Ladokhin, A.S. (2012) Folding of diphtheria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. Biochim. Biophys. Acta 1818:1006–1012.CrossRefGoogle Scholar
  27. Le Bon, C., Della Pia, E.A., Giusti, F., Lloret, N., Zoonens, M., Martinez, K.L., Popot, J.-L. (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. 42:e83.CrossRefGoogle Scholar
  28. Le Bon, C., Popot, J.-L., Giusti, F. (2014b) Labeling and functionalizing amphipols for biological applications. J. Membr. Biol. 247:797–814.CrossRefGoogle Scholar
  29. Leney, A.C., McMorran, L.M., Radford, S.E., Ashcroft, A.E. (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84:9841–9847.CrossRefGoogle Scholar
  30. Liguori, N., Roy, L.M., Opačić, M., Durand, G., Croce, R. (2013) Regulation of light-harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135:18339–18342.CrossRefGoogle Scholar
  31. Logez, C., Damian, M., Legros, C., Dupré, C., Guéry, M., Mary, S., Wagner, R., M’Kadmi, C., Nosjean, O., Fould, B., Marie, J., Fehrentz, J.A., Martinez, J., Ferry, G., Boutin, J.A., Banères, J.-L. (2016) Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles. Biochemistry 55:38–48.CrossRefGoogle Scholar
  32. Ma, D., Martin, N., Herbet, A., Boquet, D., Tribet, C., Winnik, F.M. (2012) The thermally induced aggregation of immunoglobulin G in solution is prevented by amphipols. Chem. Lett. 41:1380–1382.CrossRefGoogle Scholar
  33. Ma, D., Martin, N., Tribet, C., Winnik, F.M. (2014) Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Anal. Bioanal. Chem. 406:7539–7547.CrossRefGoogle Scholar
  34. Martin, N., Ma, D., Herbet, A., Boquet, D., Winnik, F.M., Tribet, C. (2014) Prevention of thermally induced aggregation of IgG antibodies by noncovalent interaction with poly(acrylate) derivatives. Biomacromolecules 15:2952–2962.CrossRefGoogle Scholar
  35. Martin, N., Ruchmann, J., Tribet, C. (2015) Prevention of aggregation during refolding of carbonic anhydrase via Coulomb and hydrophobic complexation with octadecyl-modified or azobenzene-modified poly(acrylate) derivatives. Langmuir 31:338–349.CrossRefGoogle Scholar
  36. Martinez, K.L., Gohon, Y., Corringer, P.-J., Tribet, C., Mérola, F., Changeux, J.-P., Popot, J.-L. (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 528:251–256.CrossRefGoogle Scholar
  37. Mary, S., Damian, M., Rahmeh, R., Marie, J., Mouillac, B., Banères, J.-L. (2014) Amphipols in G protein-coupled receptor pharmacology: What are they good for? J. Membr. Biol. 247:853–860.CrossRefGoogle Scholar
  38. Nabiev, I.R., Efremóv, R.G., Chumanov, G.D. (1985) The chromophore-binding site of bacteriorhodopsin. Resonance Raman and surface-enhanced resonance Raman spectroscopy and quantum chemical study. J. Biosci. 8:363–374.CrossRefGoogle Scholar
  39. Nabiev, I.R., Chumanov, G.D., Efremóv, R.G. (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part II. Application of short- and long-range components of SERS to the study of the structure and function of membrane proteins. J. Raman Spectrosc. 21:49–53CrossRefADSGoogle Scholar
  40. Oluwole, A.O., Danielczak, B., Meister, A., Babalola, J.O., Vargas, C., Keller, S. (2017) Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew. Chem. Int. Ed. Engl. 56:1919–1924.CrossRefGoogle Scholar
  41. Opačić, M., Durand, G., Bosco, M., Polidori, A., Popot, J.-L. (2014a) Amphipols and photosynthetic light-harvesting pigment-protein complexes. J. Membr. Biol. 247:1031–1041.CrossRefGoogle Scholar
  42. Opačić, M., Giusti, F., Broos, J., Popot, J.-L. (2014b) Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35. J. Membr. Biol. 247:1019–1030.CrossRefGoogle Scholar
  43. Orwick-Rydmark, M., Lovett, J.E., Graziadei, A., Lindholm, L., Hicks, M.R., Watts, A. (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12:4687–4692.CrossRefADSGoogle Scholar
  44. Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.-L., Champeil, P. (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869.CrossRefGoogle Scholar
  45. Pocanschi, C.L., Dahmane, T., Gohon, Y., Rappaport, F., Apell, H.-J., Kleinschmidt, J.H., Popot, J.-L. (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961.CrossRefGoogle Scholar
  46. Pocanschi, C., Popot, J.-L., Kleinschmidt, J.H. (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur. Biophys. J. 42:103–118.CrossRefGoogle Scholar
  47. Polovinkin, V., Balandin, T., Volkov, O., Round, E., Borshchevskiy, V., Utrobin, P., von Stetten, D., Royant, A., Willbold, D., Arzumanyan, A., Popot, J.-L., Gordeliy, V. (2014) Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J. Membr. Biol. 247:971–980.CrossRefGoogle Scholar
  48. Popot, J.-L., Althoff, T., Bagnard, D., Banères, J.-L., Bazzacco, P., Billon-Denis, E., Catoire, L.J., Champeil, P., Charvolin, D., Cocco, M.J., Crémel, G., Dahmane, T., de la Maza, L.M., Ebel, C., Gabel, F., Giusti, F., Gohon, Y., Goormaghtigh, E., Guittet, E., Kleinschmidt, J.H., Kühlbrandt, W., Le Bon, C., Martinez, K.L., Picard, M., Pucci, B., Rappaport, F., Sachs, J.N., Tribet, C., van Heijenoort, C., Wien, F., Zito, F., Zoonens, M. (2011) Amphipols from A to Z. Annu. Rev. Biophys. 40:379–408.CrossRefGoogle Scholar
  49. Postis, V., Rawson, S., Mitchell, J.K., Lee, S.C., Parslow, R.A., Dafforn, T.R., Baldwin, S.A., Muench, S.P. (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848:496–501.CrossRefGoogle Scholar
  50. Rahmeh, R., Damian, M., Cottet, M., Orcel, H., Mendre, C., Durroux, T., Sharma, K.S., Durand, G., Pucci, B., Trinquet, E., Zwier, J.M., Deupi, X., Bron, P., Banères JL., Mouillac, B., Granier, S. (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 109:6733–6738.CrossRefADSGoogle Scholar
  51. Richter, K., Haslbeck, M., Buchner, J. (2010) The heat shock response: Life on the verge of death. Molec. Cell 40:253–266.CrossRefGoogle Scholar
  52. Scheidelaar, S., Koorengevel, M.C., Pardo, J.D., Meeldijk, J.D., Breukink, E., Killian, J.A. (2015) Molecular model for the solubilization of membranes into nanodisks by styrene-maleic acid copolymers. Biophys. J. 108:279–290.CrossRefADSGoogle Scholar
  53. Sebai, S., Cribier, S., Karimi, A., Massotte, D., Tribet, T. (2010) Permeabilisation of lipid membranes and cells by a light-responsive copolymer. Langmuir 26:14135–14141.CrossRefGoogle Scholar
  54. Sebai, S., Milioni, D., Walrant, A., Alves, I., Sagan, S., Huin, C., Auvray, L., Massotte, D., Cribier, S., Tribet, C. (2012) Photocontrol of the translocation of molecules, peptides, and quantum dots through cell and lipid membranes doped with azobenzene copolymers. Angew. Chem. Int. Ed. 51:2132–2136.CrossRefGoogle Scholar
  55. Shinzawa-Itoh, K., Shimomura, H., Yanagisawa, S., Shimada, S., Takahashi, R., Oosaki, M., Ogura, T., Tsukihara, T. (2016) Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J. Biol. Chem. 291:4178–4184.CrossRefGoogle Scholar
  56. Smirnova, I.A., Sjöstrand, D., Li, F., Björck, M., Schäfer, J., Östbye, H., Högbom, M., von Ballmoos, C., Lander, G., Ädelroth, P., Brzezinski, P. (2016) Isolation of yeast Complex IV in native lipid nanodiscs. Biochim. Biophys. Acta 1858:2984–2992.CrossRefGoogle Scholar
  57. Smith, S.O., Lugtenburg, J., Mathies, R.A. (1985) Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J. Membr. Biol. 85:95–109.CrossRefGoogle Scholar
  58. Stangl, M., Hemmelmann, M., Allmeroth, M., Zentel, R., Schneider, D. (2014a) A minimal hydrophobicity is needed to employ amphiphilic p(HPMA)-co-p(LMA) random copolymers in membrane research. Biochemistry 53:1410–1419.CrossRefGoogle Scholar
  59. Stangl, M., Unger, S., Keller, S., Schneider, D. (2014b) Sequence-specific dimerization of a transmembrane helix in amphipol A8-35. PLOS One 9:e110970.CrossRefADSGoogle Scholar
  60. Tanaka, M., Hosotani, A., Tachibana, Y., Nakano, M., Iwasaki, K., Kawakami, T., Mukai, T. (2015) Preparation and characterization of reconstituted lipid-synthetic polymer discoidal particles. Langmuir 31:12719–12626.CrossRefGoogle Scholar
  61. Tifrea, D.F., Sun, G., Pal, S., Zardeneta, G., Cocco, M.J., Popot, J.-L., de la Maza, L.M. (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631.CrossRefGoogle Scholar
  62. Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.-L., Winnik, F.M. (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634.CrossRefGoogle Scholar
  63. Vargas, C., Cuevas Arenas, R., Frotscher, E., Keller, S. (2015) Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7:20685–20696.CrossRefADSGoogle Scholar
  64. Vervoort, E.B., Bultema, J.B., Schuurman-Wolters, G.K., Geertsma, E.R., Broos, J., Poolman, B. (2005) The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane. J. Mol. Biol. 346:733–743.CrossRefGoogle Scholar
  65. Vial, F., Rabhi, S., Tribet, C. (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862.CrossRefGoogle Scholar
  66. Vial, F., Oukhaled, A.G., Auvray, L., Tribet, C. (2007) Long-living channels of well-defined radius opened in lipid bilayers by polydisperse, hydrophobically-modified polyacrylic acids. Soft Matter 3:75–78.CrossRefADSGoogle Scholar
  67. Vial, F., Cousin, F., Bouteiller, L., Tribet, C. (2009) Rate of permeabilization of giant vesicles by amphiphilic polyacrylates compared to the adsorption of these polymers onto large vesicles and tethered lipid bilayers. Langmuir 25:7506–7513.CrossRefGoogle Scholar
  68. Zaccai, N.R., Serdyuk, I.N., Zaccai, G. (2017) Methods in Molecular Biophysics. Structure, dynamics, function, 2nd ed. Cambridge University Press, Cambridge, 684 p.Google Scholar
  69. Zhang, R., Sahu, I.D., Liu, L., Osatuke, A., Comer, R.G., Dabney-Smith, C., Lorigan, G.A. (2015) Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. Biochim. Biophys. Acta 1848:329–333.CrossRefGoogle Scholar
  70. Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Luc Popot
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations