Skip to main content

Formation and Properties of Membrane Protein/Amphipol Complexes

  • Chapter
  • First Online:
Book cover Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

Complexes between membrane proteins (MPs) and amphipols (APols) can be obtained (i) by transferring to APols a detergent-solubilized MP, (ii) by directly extracting a membrane-bound one, (iii) by folding in APols a denatured MP, or (iv) by synthesizing it in vitro in the presence of APol. The complexes comprise a belt of APol that surrounds the transmembrane region of the protein and, if available, protein-bound lipids. Trapping with APols very generally maintains the activity of the protein, but a few cases of reversible inhibition have been observed. Most APol-trapped MPs are more stable, and generally much more so, than their detergent-solubilized counterparts. Three mechanisms appear to contribute to this stabilization: (i) reduction of the hydrophobic sink, (ii) the intrinsically less dissociating character of APols as compared to detergents, and (iii) damping by APols of MP dynamics, which raises the free energy barrier to unfolding. The latter phenomenon appears to be involved in the inhibition observed with some MPs, inasmuch as it can slow down conformational transitions. MPs trapped with APols can be transferred directly to detergent solutions, to other APols, to lipid vesicles, to lipidic mesophases, to black lipid films, or to cell membranes, as well as, indirectly, to nanodiscs or SMALPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosto, M.A., Zhang, Z., He, F., Anastassov, I.A., Wright, S.J., McGehee, J., Wensel, T.G. (2014) Oligomeric state of purified TRPM1, a protein essential for dim light vision. J. Biol. Chem. 289:27019–27033.

    Article  Google Scholar 

  • Althoff, T., Mills, D.J., Popot, J.-L., Kühlbrandt, W. (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30:4652–4664.

    Google Scholar 

  • Arunmanee, W., Harris, J.R., Lakey, J.H. (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J. Membr. Biol. 247:949–956.

    Google Scholar 

  • Baenziger, J.E., Hénault, C.M., Therien, J.P.D., Sun, J. (2015) Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function. Biochim. Biophys. Acta 1848:1806–1817.

    Article  Google Scholar 

  • Bai, X.-C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S.H.W., Shi, Y. (2015) An atomic structure of human γ-secretase. Nature 525:212–218.

    Article  ADS  Google Scholar 

  • Baker, M.R., Fan, G., Serysheva, I.I. (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur. J. Transl. Myol. 25:35–48.

    Article  Google Scholar 

  • Banères, J.-L., Popot, J.-L., Mouillac, B. (2011) New advances in production and functional folding of G protein-coupled receptors. Trends Biotechnol. 29:314–322.

    Article  Google Scholar 

  • Basit, H., Sharma, S., Van der Heyden, A., Gondran, C., Breyton, C., Dumy, P., Winnik, F.M., Labbé, P. (2012) Amphipol-mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem. Commun. 48:6037–6039.

    Article  Google Scholar 

  • Bazzacco, P. (2009) Non-ionic amphipols: new tools for in vitro studies of membrane proteins. Validation and development of biochemical and biophysical applications. Thèse de Doctorat, Université Paris-7, Paris, 176 p.

    Google Scholar 

  • Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.

    Article  Google Scholar 

  • Bazzacco, P., Sharma, K.S., Durand, G., Giusti, F., Ebel, C., Popot, J.-L., Pucci, B. (2009) Trapping and stabilization of integral membrane proteins by hydrophobically grafted glucose-based telomers. Biomacromolecules 10:3317–3326.

    Article  Google Scholar 

  • Bechara, C., Bolbach, G., Bazzacco, P., Sharma, S.K., Durand, G., Popot, J.-L., Zito, F., Sagan, S. (2012) MALDI mass spectrometry analysis of membrane protein/amphipol complexes. Anal. Chem. 84:6128–6135.

    Article  Google Scholar 

  • Bersch, B., Dörr, J.M., Hessel, A., Killian, J.A., Schanda, P. (2017) Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native nanodiscs. Angew. Chem. Int. Ed. 56:2508–2512.

    Article  Google Scholar 

  • Booth, M., Peel, R., Partanen, R., Hondow, N., Vasilca, V., Jeuken, L.J.C., Critchley, K. (2013) Amphipol-encapsulated CuInS2/ZnS quantum dots with excellent colloidal stability. RSC Adv. 3:20559–20566.

    Article  Google Scholar 

  • Botte, M., Zaccai, N.R., Lycklama A., Nijeholt, J., Martin, R., Knoops, K., Papai, G., Zou, J., Deniaud, A., Karuppasamy, M., Jiang, Q., Singha Roy, A., Schulten, K., Schultz, P., Rappsilber, J., Zaccai, G., Berger, I., Collinson, I., Schaffitzel, C. (2016) A central cavity within the holotranslocon suggests a mechanism for membrane protein insertion. Sci. Rep. 6:38399.

    Article  ADS  Google Scholar 

  • Breyton, C., Tribet, C., Olive, J., Dubacq, J.-P., Popot, J.-L. (1997) Dimer to monomer conversion of the cytochrome b6 f complex: causes and consequences. J. Biol. Chem. 272:21892–21900.

    Article  Google Scholar 

  • Broecker, J., Eger, B.T., Ernst, O.P. (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:384–392.

    Article  Google Scholar 

  • Brotherus, J.R., Jost, P.C., Griffith, O.H., Hokin, L.E. (1979) Detergent inactivation of sodium- and potassium-activated adenosinetriphosphatase of the electric eel. Biochemistry 18:5043–5050.

    Article  Google Scholar 

  • Calabrese, A.N., Watkinson, T.G., Henderson, P.J.F., Radford, S.E., Ashcroft, A.E. (2015) Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal. Chem. 87:1118–1126.

    Article  Google Scholar 

  • Cao, E., Liao, M., Cheng, Y., Julius, D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118.

    Article  ADS  Google Scholar 

  • Casiraghi, M. (2016) Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. Thèse de Doctorat, Paris-7 University, Paris, 249 p.

    Article  Google Scholar 

  • Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Banères, J.-L., Catoire, L.J. (2016) Functional modulation of a GPCR conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138:11170–11175

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Baaden, M., Guittet, E., Banères, J.-L. (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J. Biomol. NMR 50:191–195.

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Giusti, F., Martin, A., van Heijenoort, C., Popot, J.-L., Guittet, E., Banères, J.-L. (2010a) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132:9049–9057.

    Article  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Guittet, E., Popot, J.-L. (2010b) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur. Biophys. J. 39:623–630.

    Article  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Popot, J.-L., Guittet, E. (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J. Magn. Res. 197:91–95.

    Article  ADS  Google Scholar 

  • Champeil, P., le Maire, M., Andersen, J.P., Guillain, F., Gingold, M., LundII, S., Møller, J.V. (1986) Kinetic characterization of the normal and detergent-perturbed reaction cycles of the sarcoplasmic reticulum calcium pump. Rate-limiting steps under different conditions. J. Biol. Chem. 261:16372–16384.

    Google Scholar 

  • Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M. (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275:18623–18637.

    Article  Google Scholar 

  • Changeux, J.-P., Giraudat, J., Heidmann, T., Popot, J.-L., Sobel, A. (1980) Functional properties of the acetylcholine receptor protein. Neurochem. Int. 2:219–231.

    Article  Google Scholar 

  • Charvolin, D., Perez, J.-B., Rouvière, F., Giusti, F., Bazzacco, P., Abdine, A., Rappaport, F., Martinez, K.L., Popot, J.-L. (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc. Natl. Acad. Sci. USA 106:405–410.

    Article  ADS  Google Scholar 

  • Charvolin, D., Picard, M., Huang, L.-S., Berry, E.A., Popot, J.-L. (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. J. Membr. Biol. 247:981–996.

    Article  Google Scholar 

  • Chen, Y., Clarke, O.B., Kim, J., Stowe, S., Kim, Y.-K., Assur, Z., Cavalier, C., Godoy-Ruiz, R., von Alpen, D.C., Manzini, C., Blaner, W.S., Frank, J., Quadro, L., Weber, D.J., Shapiro, L., Hendrickson, W.A., Mancia, F. (2016) Structure of the STRA6 receptor for retinol uptake. Science 353:pii aad8266–8261.

    Article  Google Scholar 

  • Cherezov, V., J. C., Papiz, M.Z., Caffrey, M. (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357:1605–1618.

    Article  Google Scholar 

  • Chiu, Y.H., Jin, X., Medina, C., Leonhardt, S.A., Kiessling, V., Bennett, B.C., Shu, S., Tamm, L.K., Yeager, M., Ravichandran, K.S., Bayliss, D.A. (2017) A quantized mechanism for activation of pannexin channels. Nat. Commun. 8:14324.

    Article  ADS  Google Scholar 

  • Choutko, A., Glättli, A., Fernández, C., Hilty, C., Wüthrich, K., van Gunsteren, W.F. (2011) Membrane protein dynamics in different environments: simulation study of the outer membrane protein X in a lipid bilayer and in a micelle. Eur. Biophys. J. 40:39–58.

    Article  Google Scholar 

  • Constantine, M., Liew, C.K., Lo, V., Macmillan, A., Cranfield, C.G., Sunde, M., Whan, R., Graham, R.M., Martinac, B. (2016) Heterologously-expressed and liposome-reconstituted human transient receptor potential melastatin 4 channel (TRPM4) is a functional tetramer. Sci. Rep. 6:19352.

    Article  ADS  Google Scholar 

  • Corcelli, A., Colella, M., Mascolo, G., Fanizzi, F.P., Kates, M. (2000) A novel glycolipid and phospholipid in the purple membrane. Biochemistry 39:3318–3326.

    Article  Google Scholar 

  • Corringer, P.-J., Baaden, M., Bocquet, N., Delarue, M., Dufresne, V., Nury, H., Prevost, M., Van Renterghem, C. (2010) Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J. Physiol. 588:565–572.

    Article  Google Scholar 

  • Cuevas Arenas, R., Danielczak, B., Martel, A., Porcar, L., Breyton, C., Ebel, C., Keller, S. (2017) Fast collisional lipid transfer among polymer-bounded nanodiscs. Sci. Rep. 7:45875.

    Article  ADS  Google Scholar 

  • Cvetkov, T.L., Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem. 286:38168–38176.

    Article  Google Scholar 

  • daCosta, C.J.B., Baenziger, J.E. (2009) A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284:17819–17825.

    Article  Google Scholar 

  • Dahmane, T. (2007) Protéines membranaires et amphipols : stabilisation, fonction, renaturation, et développement d'amphipols sulfonatés pour la RMN des solutions. Thèse de Docorat, Université Paris-7, Paris, 229 p.

    Google Scholar 

  • Dahmane, T., Damian, M., Mary, S., Popot, J.-L., Banères, J.-L. (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521.

    Article  Google Scholar 

  • Dahmane, T., Giusti, F., Catoire, L.J., Popot, J.-L. (2011) Sulfonated amphipols: Synthesis, properties and applications. Biopolymers 95:811–823.

    Article  Google Scholar 

  • Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.

    Article  Google Scholar 

  • Damian, M., Marie, J., Leyris, J.-P., Fehrentz, J.-A., Verdié, P., Martinez, J., Banères, J.-L., Mary, S. (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J. Biol. Chem. 287:3630–3641.

    Article  Google Scholar 

  • Davidson, A.L., Nikaido, H. (1991) Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem. 266:8946–8951.

    Google Scholar 

  • de Foresta, B., le Maire, M., Orlowski, S., Champeil, P., Lund, S., Møller, J.V., Michelangeli, F., Lee, A.G. (1989) Membrane solubilization by detergent: use of brominated phospholipids to evaluate the detergent-induced changes in Ca2+-ATPase/lipid interaction. Biochemistry 28:2558–2567.

    Article  Google Scholar 

  • de Vitry, C., Diner, B.A., Popot, J.-L. (1991) Photosystem II particles from Chlamydomonas reinhardtii: purification, molecular weight, small subunit composition, protein phosphorylation. J. Biol. Chem. 266:16614–16621.

    Google Scholar 

  • Della Pia, E.A., Holm, J., Lloret, N., Le Bon, C., Popot, J.-L., Zoonens, M., Nygård, J., Martinez, K.L. (2014) A step closer to membrane protein multiplexed nano-arrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853.

    Article  Google Scholar 

  • Diab, C., Tribet, C., Gohon, Y., Popot, J.-L., Winnik, F.M. (2007) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim. Biophys. Acta 1768:2737–2747.

    Article  Google Scholar 

  • Dominguez Pardo, J.J., Dörr, J.M., Iyer, A., Cox, R.C., Scheidelaar, S., Koorengevel, M.C., Subramaniam, V., Killian, J.A. (2017) Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Eur. Biophys. J. 46:91–101.

    Article  Google Scholar 

  • Dörr, J.M., Koorengevel, M.C., Schäfer, M., Prokofyev, A.V., Scheidelaar, S., van der Cruijsenb, E.A.W., Dafforn, T.R., Baldus, M., Killian, J.A. (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: The power of native nanodiscs. Proc. Natl. Acad. Sci. USA 111:18607–18612.

    Article  ADS  Google Scholar 

  • Dörr, J.M., Scheidelaar, S., Koorengevel, M.C., Dominguez, J.J., Schäfer, M., van Walree, C.A., Killian, J.A. (2016) The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 45:3–21.

    Article  Google Scholar 

  • Duarte, A.M.S., Wolfs, C.J.A.M., Koehorsta, R.B.M., Popot, J.-L., Hemminga, M.A. (2008) Solubilization of V-ATPase transmembrane peptides by amphipol A8-35. J. Peptide Chem. 14:389–393.

    Google Scholar 

  • Elter, S., Raschle, T., Arens, S., Viegas, A., Gelev, V., Etzkorn, M., Wagner, G. (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J. Membr. Biol. 247:957–964.

    Article  Google Scholar 

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., Wagner, G. (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401.

    Article  Google Scholar 

  • Etzkorn, M., Zoonens, M., Catoire, L.J., Popot, J.-L., Hiller, S. (2014) How amphipols embed membrane proteins: Global solvent accessibility and interaction with a flexible protein terminus. J. Membr. Biol. 247:965–970.

    Article  Google Scholar 

  • Fan, G., Gonzalez, J., Popova, O.B., Wensel, T.G., Serysheva, I.I. (2014) A first look into the 3D structure of the TRPV2 channel by single-particle cryo-EM. Biophys. J. 106:600a-601a.

    Article  Google Scholar 

  • Feinstein, H.E., Tifrea, D., Sun, G., Popot, J.-L., de la Maza, L.M., Cocco, M.J. (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J. Membr. Biol. 247:1053–1065.

    Article  Google Scholar 

  • Fernández, C., Adeishvili, K., Wüthrich, K. (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoylphosphatidylcholine micelles. Proc. Natl. Acad. Sci. USA 98:2358–2363.

    Article  ADS  Google Scholar 

  • Ferrandez, Y., Dezi, M., Bosco, M., Urvoas, A., Valério, M., Le Bon, C., Giusti, F., Broutin, I., Durand, G., Polidori, A., Popot, J.-L., Picard, M., Minard, P. (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J. Membr. Biol. 247:925–940.

    Article  Google Scholar 

  • Flötenmeyer, M., Weiss, H., Tribet, C., Popot, J.-L., Leonard, K. (2007) The use of amphipathic polymers for cryo-electron microscopy of NADH:ubiquinone oxidoreductase (Complex I). J. Microsc. 227:229–235.

    Article  MathSciNet  Google Scholar 

  • Forman, S.A., Chiara, D.C., Miller, K.W. (2015) Anesthetics target interfacial transmembrane sites in nicotinic acetylcholine receptors. Neuropharmacology 96:169–177.

    Article  Google Scholar 

  • Frindi, M., Michels, B., Zana, R. (1992a) Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 2. C6E3, C8E4 and C8E8. J. Phys. Chem. 96:6095–6102.

    Article  Google Scholar 

  • Frindi, M., Michels, B., Zana, R. (1992b) Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group. J. Phys. Chem. 96:8137–8141.

    Article  Google Scholar 

  • Gao, Y., Cao, E., Julius, D., Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351.

    Article  ADS  Google Scholar 

  • Ge, J., Li, W., Zhao, Q., Li, N., Chen, M., Zhi, P., Li, R., Gao, N., Xiao, B., Yang, M. (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69.

    Article  ADS  Google Scholar 

  • Giusti, F., Kessler, P., Westh Hansen, R., Della Pia, E.A., Le Bon, C., Mourier, G., Popot, J.-L., Martinez, K.L., Zoonens, M. (2015) Synthesis of a polyhistidine-bearing amphipol and its use for immobilizing membrane proteins. Biomacromolecules 16:3751–3761.

    Article  Google Scholar 

  • Giusti, F., Popot, J.-L., Tribet, C. (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: A study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380.

    Article  Google Scholar 

  • Giusti, F., Rieger, J., Catoire, L., Qian, S., Calabrese, A.N., Watkinson, T.G., Casiraghi, M., Radford, S.E., Ashcroft, A.E., Popot, J.-L. (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J. Membr. Biol. 247:909–924.

    Article  Google Scholar 

  • Goddard, A.D., Dijkman, P.M., Adamson, R.J., Inácio dos Reis, R., Watts, A. (2015) Reconstitution of membrane proteins: A GPCR as an example. Meth. Enzymol. 556:405–424.

    Article  Google Scholar 

  • Gohon, Y. (1996) Etude des interactions entre un analogue du fragment transmembranaire de la glycophorine A et des polymères amphiphiles: les amphipols. Thèse de DEA, Université Paris VI, Paris, 28 p.

    Google Scholar 

  • Gohon, Y. (2002) Etude structurale et fonctionnelle de deux protéines membranaires, la bactériorhodopsine et le récepteur nicotinique de l'acétylcholine, maintenues en solution aqueuse non détergente par des polymères amphiphiles. Thèse de Doctorat, Université Paris-VI, Paris, 467 p.

    Google Scholar 

  • Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.

    Article  ADS  Google Scholar 

  • Gohon, Y., Giusti, F., Prata, C., Charvolin, D., Timmins, P., Ebel, C., Tribet, C., Popot, J.-L. (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290.

    Article  Google Scholar 

  • Gohon, Y., Pavlov, G., Timmins, P., Tribet, C., Popot, J.-L., Ebel, C. (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal. Biochem. 334:318–334.

    Article  Google Scholar 

  • Gorzelle, B.M., Hoffman, A.K., Keyes, M.H., Gray, D.N., Ray, D.G., Sanders II, C.R. (2002) Amphipols can support the activity of a membrane enzyme. J. Am. Chem. Soc. 124:11594–11595.

    Article  Google Scholar 

  • Goyal, P., Krasteva, P.V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., Jonckheere, W., Péhau-Arnaudet, G., Pinkner, J.S., Chapman, M.R., Hultgren, S.J., Howorka, S., Fronzes, R., Remaut, H. (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250–253.

    Article  ADS  Google Scholar 

  • Grethen, A., Glueck, D., Keller, S. (2018) Role of coulombic repulsion in collisional lipid transfer among SMA(2:1)-bounded nanodiscs. J. Membr. Biol., in the press.

    Google Scholar 

  • Grethen, A., Oluwole, A.O., Danielczak, B., Vargas, C., Keller, S. (2017) Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Sci. Rep. 7:11517.

    Article  ADS  Google Scholar 

  • Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson, R. (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393–421.

    Article  Google Scholar 

  • Guild, K., Zhang, Y., Stacy, R., Mundt, E., Benbow, S., Green, A., Myler, P.J. (2011) Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67:1027–1031.

    Article  Google Scholar 

  • Gulati, S., Jamshad, M., Knowles, T.J., Morrison, K.A., Downing, R., Cant, N., Collins, R., Koenderink, J.B., Ford, R.C., Overduin, M., Kerr, I.D., Dafforn, T.R., Rothnie, A.J. (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461:269–278.

    Article  Google Scholar 

  • Han, S.G., Baek, S.I., Son, T.J., Lee, H., Kim, N.H., Yu, Y.G. (2017) Preparation of functional human lysophosphatidic acid receptor 2 using a P9* expression system and an amphipathic polymer and investigation of its in vitro binding preference to Gα proteins. Biochem. Biophys. Res. Commun. 487:103–108.

    Article  Google Scholar 

  • Han, S.G., Na, J.H., Lee, W.K., Park, D., Oh, J., Yoon, S.H., Lee, C.K., Sung, M.H., Shin, Y.K., Yu, Y.G. (2014) An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins. Prot. Sci. 23:1800–1807.

    Article  Google Scholar 

  • He, Y., Gao, X., Goswami, D., Hou, L., Pal, K., Yin, Y., Zhao, G., Ernst, O.P., Griffin, P., Melcher, K., Xu, H.E. (2017) Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Res. 2017:1–20.

    Google Scholar 

  • Hénault, C.M., Sun, J., Therien, J.P.D., daCosta, C.J.B., Carswell, C.L., Labriola, J.M., Juranka, P.F., Baenziger, J.E. (2015) The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology 96:157–168.

    Article  Google Scholar 

  • Hilf, R.J., Dutzler, R. (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–118.

    Article  ADS  Google Scholar 

  • Hirai, T., Subramaniam, S., Lanyi, J.K. (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr. Opin. Struct. Biol. 19:433–439.

    Article  Google Scholar 

  • Hong, H., Tamm, L.K. (2004) Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc. Natl. Acad. Sci. USA 101:4065–4070.

    Article  ADS  Google Scholar 

  • Hopper, J.T.S., Yu, Y.T.-C., Li, D., Raymond, A., Bostock, M., Liko, I., Mikhailov, V., Laganowsky, A., Benesch, J.L.P., Caffrey, M., Nietlispach, D., Robinson, C.V. (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat. Meth. 10:1206–1208.

    Article  Google Scholar 

  • Huang, K.-S., Bayley, H., Liao, M.-J., London, E., Khorana, H.G. (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J. Biol. Chem. 256:3802–3809.

    Google Scholar 

  • Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2014) Application of amphipols for structure-functional analysis of TRP channels. J. Membr. Biol. 247:843–851.

    Article  Google Scholar 

  • Ireland, S.M., Sula, S., Wallace, B.A. (2017) Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs. Biopolymers 2017:e23067.

    Article  Google Scholar 

  • Jamshad, M., Charlton, J., Lin, Y.-P., Routledge, S.J., Bawa, Z., Knowles, T.J., Overduin, M., Dekker, N., Dafforn, T.R., Bill, R.M., Poyner, D.R., Wheatley, M. (2015a) G protein-coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosc. Rep. 35:e00188.

    Article  Google Scholar 

  • Jamshad, M., Grimard, V., Idini, I., Knowles, T.J., Dowle, M.R., Schofield, N., Sridhar, P., Lin, Y., Finka, R., Wheatley, M., Thomas, O.R.T., Palmer, R.E., Overduin, M., Govaerts, C., Ruysschaert, J.-M., Edler, K.J., Dafforn, T.R. (2015b) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins Nano Res. 8:774–789.

    Article  Google Scholar 

  • Jamshad, M., Lin, Y.P., Knowles, T.J., Parslow, R.A., Harris, C., Wheatley, M., Poyner, D.R., Bill, R.M., Thomas, O.R.T., Overduin, M., Dafforn, T.R. (2011) Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 39:813–818.

    Article  Google Scholar 

  • Jeong, H., Kim, J.-S., Song, S., Shigematsu, H., Yokoyama, T., Hyun, J., Ha, N.-C. (2016) Pseudoatomic structure of the tripartite multidrug efflux pump AcrAB-TolC reveals the intermeshing cogwheel-like interaction between AcrA and TolC. Structure 24:272–276.

    Article  Google Scholar 

  • Jin, P., Bulkley, D., Guo, Y., Zhang, W., Guo, Z., Huynh, W., Wu, S., Meltzer, S., Cheng, T., Jan, L.Y., Jan, Y.-N., Cheng, Y. (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118–122.

    Article  ADS  Google Scholar 

  • Joshi, M., Dracheva, S., Mukhopadhyay, A.K., Bose, S., Hendler, R.W. (1998) Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin. Biochemistry 37:14463–14470.

    Article  Google Scholar 

  • Kevany, B.M., Tsybovsky, Y., Campuzano, I.D.G., Schnier, P.D., Engel, A., Palczewski, K. (2013) Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J. Biol. Chem. 288:36272–36284.

    Article  Google Scholar 

  • Kievit, O., Brudvig, G.W. (2001) Direct electrochemistry of photosystem I. J. Electroanal. Chem. 497:139–149.

    Article  Google Scholar 

  • Klammt, C., Perrin, M.-H., Maslennikov, I., Renault, L., Krupa, M., Kwiatkowski, W., Stahlberg, H., Vale, W., Choe, S. (2011) Polymer-based cell-free expression of ligand-binding family B G protein-coupled receptors without detergents. Prot. Sci. 20:1030–1041.

    Article  Google Scholar 

  • Kleinschmidt, J.H., Popot, J.-L. (2014) Folding and stability of integral membrane proteins in amphipols. Arch. Biochem. Biophys. 564:327–343.

    Article  Google Scholar 

  • Knowles, T.J., Finka, R., Smith, C., Lin, Y.-P., Dafforn, T.R., Overduin, M. (2009) Membrane proteins solubilized intact in lipid-containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131:7484–7485.

    Article  Google Scholar 

  • Kraft, T.E., Hresko, R.C., Hruz, P.W. (2015) Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4. Protein Sci. 24:2008–2019.

    Article  Google Scholar 

  • Kumar, S., Bagchi, S., Prasad, S., Sharma, A., Kumar, R., Kaur, R., Singh, J., Bhondekar, A.P. (2016) Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour. Beilstein J. Nanotechnol. 7:501–510.

    Article  Google Scholar 

  • Kuszak, A.J., Pitchiaya, S., Anand, J.P., Mosberg, H.I., Walter, N.G., Sunahara, R.K. (2009) Purification and functional reconstitution of monomeric μ-opioid receptors: Allosteric modulation of agonist binding by Gi2. J. Biol. Chem. 284:26732–26741.

    Article  Google Scholar 

  • Kyrychenko, A., Rodnin, M.V., Vargas, M.U., Sharma, S.K., Durand, G., Pucci, B., Popot, J.-L., Ladokhin, A.S. (2012) Folding of diphtheria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. Biochim. Biophys. Acta 1818:1006–1012.

    Article  Google Scholar 

  • Ladavière, C., Toustou, M., Gulik-Krzywicki, T., Tribet, C. (2001) Slow reorganization of small phosphatidylcholine vesicles upon adsorption of amphiphilic polymers. J. Colloid Interface Sci. 241:178–187.

    Article  ADS  Google Scholar 

  • Ladavière, C., Tribet, C., Cribier, S. (2002) Lateral organization of lipid membranes induced by amphiphilic polymer inclusions. Langmuir 18:7320–7327.

    Article  Google Scholar 

  • Laursen, T., Borch, J., Knudsen, C., Bavishi, K., Torta, F., Martens, H.J., Silvestro, D., Hatzakis, N.S., Wenk, M.R., Dafforn, T.R., Olsen, C.E., Motawia, M.S., Hamberger, B., Møller, B.L., Bassard, J.-E. (2016) Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354:890–893.

    Article  ADS  Google Scholar 

  • Laursen, T., Naur, P., Møller, B.L. (2013) Amphipol trapping of a functional CYP system. Biotechn. Applied Biochem. 60:119–127.

    Article  Google Scholar 

  • Le Bon, C., Della Pia, E.A., Giusti, F., Lloret, N., Zoonens, M., Martinez, K.L., Popot, J.-L. (2014) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. 42:e83.

    Article  Google Scholar 

  • Le Bon, C., Marconnet, A., Masscheleyn, S., Popot, J.-L., Zoonens, M. (2018) Folding and stabilizing membrane proteins in amphipol A8-35. Methods, in the press.

    Google Scholar 

  • le Maire, M., Champeil, P., Møller, J.V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508:86–111.

    Article  Google Scholar 

  • Lee, S.C., Khalid, S., Pollock, N.L., Knowles, T.J., Edler, K., Rothnie, A.J., Thomas, O.R.T., Dafforn, T.R. (2016) Encapsulated membrane proteins: A simplified system for molecular simulation. Biochim. Biophys. Acta 1858:2549–2557.

    Article  Google Scholar 

  • Lee, S.C., Pollock, N.L. (2016) Membrane proteins: is the future disc shaped? Biochem. Soc. Trans. 44:1011–1018.

    Article  Google Scholar 

  • Leney, A.C., McMorran, L.M., Radford, S.E., Ashcroft, A.E. (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84:9841–9847.

    Article  Google Scholar 

  • Leray, V., Hubert, P., Burgun, C., Staedel, C., Crémel, G. (1993) Reconstitution studies of lipid effects on insulin-receptor kinase activation. Eur. J. Biochem. 213:277–284.

    Article  Google Scholar 

  • Leray, V., Hubert, P., Crémel, G., Staedel, C. (1992) Detergents affect insulin binding, tyrosine kinase activity and oligomeric structure of partially purified insulin receptors. Arch. Biochem. Biophys. 294:22–29.

    Article  Google Scholar 

  • Li, D., Li, J., Zhuang, Y., Zhang, L., Xiong, Y., Shi, P., Tian, C. (2015a) Nano-size uni-lamellar lipodisq-improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using 19F nuclear magnetic resonance. Protein Cell 6:229–233.

    Article  Google Scholar 

  • Li, J.P., Ouyang, Y.Y., Kong, X., Zhu, J.Y., Lu, D.N., Liu, Z. (2015b) A multi-scale molecular dynamics simulation of PMAL facilitated delivery of siRNA. RSC Adv. 5:68227–68233.

    Article  Google Scholar 

  • Li, M., Zhou, X., Wang, S., Michailidis, I., Gong, Y., Su, D., Li, H., Li, X., Yang, J. (2017) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542:60–65.

    Article  ADS  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112.

    Article  ADS  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr. Opin. Struct. Biol. 27:1–7.

    Article  Google Scholar 

  • Liguori, N., Roy, L.M., Opačić, M., Durand, G., Croce, R. (2013) Regulation of light-harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135:18339–18342.

    Article  Google Scholar 

  • Lim, S.J., Zahid, M.U., Le, P., Ma, L., Entenberg, D., Harney, A.S., Condeelis, J., Smith, A.M. (2015) Brightness-equalized quantum dots. Nat. Commun. 20:161–169.

    Google Scholar 

  • Lindhoud, S., Carvalho, V., Pronk, J.W., Aubin-Tam, M.E. (2016) SMA-SH: Modified styrene-maleic acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules 17:1516–1522.

    Article  Google Scholar 

  • Logez, C., Damian, M., Legros, C., Dupré, C., Guéry, M., Mary, S., Wagner, R., M'Kadmi, C., Nosjean, O., Fould, B., Marie, J., Fehrentz, J.A., Martinez, J., Ferry, G., Boutin, J.A., Banères, J.-L. (2016) Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles. Biochemistry 55:38–48.

    Article  Google Scholar 

  • Long, A.R., O’Brien, C.C., Malhotra, K., Schwall, C.T., Albert, A.D., Watts, A., Alder, N.N. (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol. 13:41.

    Article  Google Scholar 

  • Lu, P., Bai, X.-C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S.H.W., Shi, Y. (2014) Three-dimensional structure of human γ-secretase. Nature 512:166–170.

    Article  ADS  Google Scholar 

  • Luccardini, C., Tribet, C., Vial, F., Marchi-Artzner, V., Dahan, M. (2006) Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22:2304–2310.

    Article  Google Scholar 

  • Lund, S., Orlowski, S., de Foresta, B., Champeil, P., le Maire, M., Møller, J.V. (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J. Biol. Chem. 264:4907–4915.

    Google Scholar 

  • Ma, D., Martin, N., Tribet, C., Winnik, F.M. (2014) Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Anal. Bioanal. Chem. 406:7539–7547.

    Article  Google Scholar 

  • Malhotra, K., Alder, N.N. (2014) Advances in the use of nanoscale bilayers to study membrane protein structure and function. Biotechnol. Genet. Eng. Rev. 30:79–93.

    Article  Google Scholar 

  • Marie, E., Sagan, S., Cribier, S., Tribet, C. (2014) Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J. Membr. Biol. 247:861–881.

    Article  Google Scholar 

  • Martin, N., Ma, D., Herbet, A., Boquet, D., Winnik, F.M., Tribet, C. (2014) Prevention of thermally induced aggregation of IgG antibodies by noncovalent interaction with poly(acrylate) derivatives. Biomacromolecules 15:2952–2962.

    Article  Google Scholar 

  • Martin, N., Ruchmann, J., Tribet, C. (2015) Prevention of aggregation during refolding of carbonic anhydrase via Coulomb and hydrophobic complexation with octadecyl-modified or azobenzene-modified poly(acrylate) derivatives. Langmuir 31:338–349.

    Article  Google Scholar 

  • Martinez, K.L., Gohon, Y., Corringer, P.-J., Tribet, C., Mérola, F., Changeux, J.-P., Popot, J.-L. (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 528:251–256.

    Article  Google Scholar 

  • Mary, S., Damian, M., Rahmeh, R., Marie, J., Mouillac, B., Banères, J.-L. (2014) Amphipols in G protein-coupled receptor pharmacology: What are they good for? J. Membr. Biol. 247:853–860.

    Article  Google Scholar 

  • Merino, J.M., Møller, J.V., Gutiérrez-Merino, C. (1994) Thermal unfolding of monomeric Ca2+,Mg2+-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle. FEBS Lett. 343:155–159.

    Article  Google Scholar 

  • Milder, S.J., Thorgeirsson, T.E., Miercke, L.J., Stroud, R.M., Kliger, D.S. (1991) Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. Biochemistry 30:1751–1761.

    Article  Google Scholar 

  • Møller, J.V., le Maire, M. (1993) Detergent binding as a measure of hydrophobic surface area of integral membrane proteins. J. Biol. Chem. 268:18659–18672.

    Google Scholar 

  • Møller, J.V., Olesen, C., Winther, A.M.L., Nissen, P. (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43:501–566.

    Article  Google Scholar 

  • Murakami, S., Nakashima, R., Yamashita, E., Yamaguchi, A. (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593.

    Article  ADS  Google Scholar 

  • Nagy, J.K., Kuhn Hoffmann, A., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R. (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett. 1:115–120.

    Article  Google Scholar 

  • Ning, Z., Hawley, B., Seebun, D., Figeys, D. (2014) APols-aided protein precipitation: a rapid method for concentrating proteins for proteomic analysis. J. Membr. Biol. 247:941–947.

    Article  Google Scholar 

  • Ning, Z., Seebun, D., Hawley, B., Chang, C.-K., Figeys, D. (2013) From cells to peptides: “One-stop” integrated proteomic processing using amphipols. J. Proteome Res. 12:1512–1519.

    Article  Google Scholar 

  • Norimatsu, Y., Hasegawa, K., Shimizu, N., Toyoshima, C. (2017) Protein-phospholipid interplay revealed with crystals of a calcium pump. Nature 545:193–198.

    Article  ADS  Google Scholar 

  • Nowaczyk, M., Oworah-Nkruma, R., Zoonens, M., Rögner, M., Popot, J.-L. (2004) Amphipols: strategies for an improved PS2 environment in aqueous solution, in: Miyake, J. (Ed.), Biohydrogen III. Elsevier, Dordrecht, The Netherlands, Kyoto, pp. 151–159.

    Chapter  Google Scholar 

  • Obara, K., Miyashita, N., Xu, C., Toyoshima, I., Sugita, Y., Inesi, G., Toyoshima, C. (2005) Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc. Natl. Acad. Sci. USA 102:14489–14496.

    Article  ADS  Google Scholar 

  • Oluwole, A.O., Danielczak, B., Meister, A., Babalola, J.O., Vargas, C., Keller, S. (2017) Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew. Chem. Int. Ed. Engl. 56:1919–1924.

    Article  Google Scholar 

  • Opačić, M., Durand, G., Bosco, M., Polidori, A., Popot, J.-L. (2014a) Amphipols and photosynthetic light-harvesting pigment-protein complexes. J. Membr. Biol. 247:1031–1041.

    Article  Google Scholar 

  • Opačić, M., Giusti, F., Broos, J., Popot, J.-L. (2014b) Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35. J. Membr. Biol. 247:1019–1030.

    Article  Google Scholar 

  • Orwick-Rydmark, M., Lovett, J.E., Graziadei, A., Lindholm, L., Hicks, M.R., Watts, A. (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12:4687–4692.

    Article  ADS  Google Scholar 

  • Palmgren, M.G., Nissen, P. (2011) P-Type ATPases. Annu. Rev. Biophys. 40:243–266.

    Article  Google Scholar 

  • Park, K.-H., Billon-Denis, E., Dahmane, T., Lebaupain, F., Pucci, B., Breyton, C., Zito, F. (2011) In the cauldron of cell-free synthesis of membrane proteins: Playing with new surfactants. New Biotech. 28:255–261.

    Article  Google Scholar 

  • Paulin, S., Jamshad, M., Dafforn, T.R., Garcia-Lara, J., Foster, S.J., Galley, N.F., Roper, D.I., Rosado, H., Taylor, P.W. (2014) Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a. Nanotechnology 25:285101.

    Article  ADS  Google Scholar 

  • Paulsen, C.E., Armache, J.-P., Gao, Y., Cheng, Y., Julius, D. (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511–517.

    Article  ADS  Google Scholar 

  • Periasamy, A., Shadiac, N., Amalraj, A., Garajová, S., Nagarajan, Y., Waters, S., Mertens, H.D.T., Hrmova, M. (2013) Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta 1828:743–757.

    Article  Google Scholar 

  • Perlmutter, J.D., Drasler, W.J., Xie, W., Gao, J., Popot, J.-L., Sachs, J.N. (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein-stabilizing polymer. Langmuir 27:10523–10537.

    Article  Google Scholar 

  • Perlmutter, J.D., Popot, J.-L., Sachs, J.N. (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J. Membr. Biol. 247:883–895.

    Article  Google Scholar 

  • Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.-L., Champeil, P. (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869.

    Article  Google Scholar 

  • Planchard, N., Point, E., Dahmane, T., Giusti, F., Renault, M., Le Bon, C., Durand, G., Milon, A., Guittet, E., Zoonens, M., Popot, J.-L., Catoire, L.J. (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J. Membr. Biol. 247:827–842.

    Article  Google Scholar 

  • Pocanschi, C., Popot, J.-L., Kleinschmidt, J.H. (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur. Biophys. J. 42:103–118.

    Article  Google Scholar 

  • Pocanschi, C.L., Apell, H.-J., Puntervoll, P., Høgh, B.T., Jensen, H.B., Welte, W., Kleinschmidt, J.H. (2006a) Folding and membrane insertion of the major outer membrane protein of Fusobacterium nucleatum (FomA). J. Mol. Biol. 355:548–561.

    Article  Google Scholar 

  • Pocanschi, C.L., Dahmane, T., Gohon, Y., Rappaport, F., Apell, H.-J., Kleinschmidt, J.H., Popot, J.-L. (2006b) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961.

    Article  Google Scholar 

  • Polovinkin, V., Balandin, T., Volkov, O., Round, E., Borshchevskiy, V., Utrobin, P., von Stetten, D., Royant, A., Willbold, D., Arzumanyan, A., Popot, J.-L., Gordeliy, V. (2014a) Nanoparticle surface-enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J. Membr. Biol. 247:971–980.

    Article  Google Scholar 

  • Polovinkin, V., Gushchin, I., Balandin, T., Chervakov, P., Round, E., Shevchenko, V., Popov, A., Borshchevskiy, V., Popot, J.-L., Gordeliy, V. (2014b) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J. Membr. Biol. 247:997–1004.

    Article  Google Scholar 

  • Popot, J.-L. (2010) Amphipols, nanodiscs, and fluorinated surfactants: Three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79:737–775.

    Article  Google Scholar 

  • Popot, J.-L. (2014) Folding membrane proteins in vitro: A table and some comments. Arch. Biochem. Biophys. 564:314–326.

    Article  ADS  Google Scholar 

  • Popot, J.-L., Althoff, T., Bagnard, D., Banères, J.-L., Bazzacco, P., Billon-Denis, E., Catoire, L.J., Champeil, P., Charvolin, D., Cocco, M.J., Crémel, G., Dahmane, T., de la Maza, L.M., Ebel, C., Gabel, F., Giusti, F., Gohon, Y., Goormaghtigh, E., Guittet, E., Kleinschmidt, J.H., Kühlbrandt, W., Le Bon, C., Martinez, K.L., Picard, M., Pucci, B., Rappaport, F., Sachs, J.N., Tribet, C., van Heijenoort, C., Wien, F., Zito, F., Zoonens, M. (2011) Amphipols from A to Z. Annu. Rev. Biophys. 40:379–408.

    Article  Google Scholar 

  • Popot, J.-L., Berry, E.A., Charvolin, D., Creuzenet, C., Ebel, C., Engelman, D.M., Flötenmeyer, M., Giusti, F., Gohon, Y., Hervé, P., Hong, Q., Lakey, J.H., Leonard, K., Shuman, H.A., Timmins, P., Warschawski, D.E., Zito, F., Zoonens, M., Pucci, B., Tribet, C. (2003) Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60:1559–1574.

    Article  Google Scholar 

  • Postis, V., Rawson, S., Mitchell, J.K., Lee, S.C., Parslow, R.A., Dafforn, T.R., Baldwin, S.A., Muench, S.P. (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848:496–501.

    Article  Google Scholar 

  • Prabudiansyah, I., Kusters, I., Caforio, A., Driessen, A.J.M. (2015) Characterization of the annular lipid shell of the Sec translocon. Biochim. Biophys. Acta 1848:2050–2056.

    Article  Google Scholar 

  • Prata, C., Giusti, F., Gohon, Y., Pucci, B., Popot, J.-L., Tribet, C. (2001) Non-ionic amphiphilic polymers derived from tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 56:77–84.

    Article  Google Scholar 

  • Qi, L., Gao, X. (2008) Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2:1403–1410.

    Article  Google Scholar 

  • Rahmeh, R., Damian, M., Cottet, M., Orcel, H., Mendre, C., Durroux, T., Sharma, K.S., Durand, G., Pucci, B., Trinquet, E., Zwier, J.M., Deupi, X., Bron, P., J.-L. B., Mouillac, B., Granier, S. (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 109:6733–6738.

    Article  ADS  Google Scholar 

  • Rajesh, S., Knowles, T.J., Overduin, M. (2011) Production of membrane proteins without cells or detergents. New Biotechnol. 28:250–254.

    Article  Google Scholar 

  • Rehan, S., Paavilainen, V.O., Jaakola, V.P. (2017) Functional reconstitution of human equilibrative nucleoside transporter-1 into styrene maleic acid co-polymer lipid particles. Biochim. Biophys. Acta 1859:1059–1065.

    Article  Google Scholar 

  • Reich-Slotky, R., Panagiotidis, C., Reyes, M., Shuman, H.A. (2000) The detergent-soluble maltose transporter is activated by maltose binding protein and verapamil. J. Bact. 182:993–1000.

    Article  Google Scholar 

  • Renault, M. (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide. Thèse de Doctorat, Université Paul Sabatier, Toulouse, 180 p.

    Google Scholar 

  • Renner, C., Kessler, B., Oesterhelt, D. (2005) Lipid composition of integral purple membrane by 1H and 31P NMR. J. Lipid Res. 46:1755–1764.

    Article  Google Scholar 

  • Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G. (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464:211–231.

    Article  Google Scholar 

  • Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., Kobilka, B.K. (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–1273.

    Article  ADS  Google Scholar 

  • Sahu, I.D., McCarrick, R.M., Troxel, K.R., Zhang, R., Smith, H.J., Dunagan, M.M., Swartz, M.S., Rajan, P.V., Kroncke, B.M., Sanders, C.R., Lorigan, G.A. (2013) DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry 52:6627–6632.

    Article  Google Scholar 

  • Sebai, S., Cribier, S., Karimi, A., Massotte, D., Tribet, T. (2010) Permeabilisation of lipid membranes and cells by a light-responsive copolymer. Langmuir 26:14135–14141.

    Article  Google Scholar 

  • Sebai, S., Milioni, D., Walrant, A., Alves, I., Sagan, S., Huin, C., Auvray, L., Massotte, D., Cribier, S., Tribet, C. (2012) Photocontrol of the translocation of molecules, peptides, and quantum dots through cell and lipid membranes doped with azobenzene copolymers. Angew. Chem. Int. Ed. 51:2132–2136.

    Article  Google Scholar 

  • Shao, J., Fu, Z., Ji, Y., Guan, X., Guo, S., Ding, Z., Yang, X., Cong, Y., Shen, Y. (2016) Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter. Sci. Rep. 6:34174.

    Article  ADS  Google Scholar 

  • Sharma, K.S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L.J., Popot, J.-L., Ebel, C., Pucci, B. (2012) Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639.

    Article  Google Scholar 

  • Sharma, K.S., Durand, G., Giusti, F., Olivier, B., Fabiano, A.-S., Bazzacco, P., Dahmane, T., Ebel, C., Popot, J.-L., Pucci, B. (2008) Glucose-based amphiphilic telomers designed to keep membrane proteins soluble in aqueous solutions: synthesis and physico-chemical characterization. Langmuir 24:13581–13590.

    Article  Google Scholar 

  • Shen, P.S., Yang, X., DeCaen, P.G., Liu, X., Bulkley, D., Clapham, D.E., Cao, E. (2016) The structure of the Polycystic Kidney Disease channel PKD2 in lipid nanodiscs. Cell 167:763–773.e711.

    Article  Google Scholar 

  • Shinzawa-Itoh, K., Shimomura, H., Yanagisawa, S., Shimada, S., Takahashi, R., Oosaki, M., Ogura, T., Tsukihara, T. (2016) Purification of active respiratory supercomplex from bovine heart mitochondria enables functional studies. J. Biol. Chem. 291:4178–4184.

    Article  Google Scholar 

  • Skaar, K., Korza, H.J., Tarry, M., Sekyrova, P., Högbom, M. (2015) Expression and subcellular distribution of GFP-tagged human tetraspanin proteins in Saccharomyces cerevisiae. PLoS One 10:e0134041.

    Article  Google Scholar 

  • Smirnova, I.A., Sjöstrand, D., Li, F., Björck, M., Schäfer, J., Östbye, H., Högbom, M., von Ballmoos, C., Lander, G., Ädelroth, P., Brzezinski, P. (2016) Isolation of yeast Complex IV in native lipid nanodiscs. Biochim. Biophys. Acta, 1858:2984–2992.

    Article  Google Scholar 

  • Sólyom, Z., Ma, P., Schwarten, M., Bosco, M.I., Polidori, A., Durand, G., Willbold, D., Brutscher, B. (2015) The disordered region of the HCV protein NS5A: conformational dynamics, SH3 binding, and phosphorylation. Biophys. J. 109:1483–1496.

    Article  ADS  Google Scholar 

  • Sonntag, Y., Musgaard, M., Olesen, C., Schiøtt, B., Møller, J.V., Nissen, P., Thøgersen, L. (2011) Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nat. Commun. 2:304.

    Article  ADS  Google Scholar 

  • Sousa, J.S., Mills, D.J., Vonck, J., Kühlbrandt, W. (2016) Functional asymmetry and electron flow in the bovine respirasome. eLIFE 5:e21290.

    Article  Google Scholar 

  • Spear, J.M., Koborssy, D.A., Schwartz, A.B., Johnson, A.J., Audhya, A., Fadool, D.A., Stagg, S.M. (2015) Kv1.3 contains an alternative C-terminal ER exit motif and is recruited into COPII vesicles by Sec24a. BMC Biochem. 16:16.

    Article  Google Scholar 

  • Stangl, M., Unger, S., Keller, S., Schneider, D. (2014) Sequence-specific dimerization of a transmembrane helix in amphipol A8-35. PLOS One 9:e110970.

    Article  ADS  Google Scholar 

  • Sverzhinsky, A., Qian, S., Yang, L., Allaire, M., Moraes, I., Ma, D., Chung, J.W., Zoonens, M., Popot, J.-L., Coulton, J.W. (2014) Amphipol-trapped ExbB-ExbD membrane protein complex from Escherichia coli: A biochemical and structural case study. J. Membr. Biol. 247:1005–1018.

    Article  Google Scholar 

  • Swainsbury, D.J.K., Scheidelaar, S., van Grondelle, R., Killian, J.A., Jones, M.R. (2014) Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew. Chemie Int. Ed. 53:11803–11807.

    Article  Google Scholar 

  • Sweadner, K.J. (2017) An ion-transport enzyme that rocks. Nature 545:162–164.

    Article  ADS  Google Scholar 

  • Swift, J. (1726) Travels into Several Remote Nations of the World. In Four Parts. By Lemuel Gulliver, First a Surgeon, and then a Captain of several Ships. Benjamin Motte, London.

    Google Scholar 

  • Tehei, M., Perlmutter, J.D., Giusti, F., Sachs, J.N., Zaccai, G., Popot, J.-L. (2014) Thermal fluctuations in amphipol A8-35 particles: A neutron scattering and molecular dynamics study. J. Membr. Biol. 247:897–908.

    Article  Google Scholar 

  • Tifrea, D., Pal, S., Cocco, M.J., Popot, J.-L., de la Maza, L.M. (2014) Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with C. muridarum. J. Immunol. 192:5201–5213.

    Article  Google Scholar 

  • Tifrea, D.F., Pal, S., Le Bon, C., Giusti, F., Cocco, M.J., Zoonens, M., de la Maza, L.M. (2018a) Resiquimod conjugated with amphipols bound to the Chlamydia muridarum MOMP enhances protection against a mucosal challenge. In preparation.

    Google Scholar 

  • Tifrea, D.F., Pal, S., Le Bon, C., Giusti, F., Popot, J.-L., Cocco, M.J., Zoonens, M., de la Maza, L.M. (2018b) Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Submitted for publication.

    Google Scholar 

  • Tifrea, D.F., Sun, G., Pal, S., Zardeneta, G., Cocco, M.J., Popot, J.-L., de la Maza, L.M. (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631.

    Article  Google Scholar 

  • Toyoshima, C., Inesi, G. (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 73:269–292.

    Article  Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655.

    Article  ADS  Google Scholar 

  • Toyoshima, C., Nomura, H. (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611.

    Article  ADS  Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93:15047–15050.

    Article  ADS  Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: Application to integral membrane proteins. Langmuir 13:5570–5576.

    Article  Google Scholar 

  • Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.-L., Winnik, F.M. (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634.

    Article  Google Scholar 

  • Tribet, C., Mills, D., Haider, M., Popot, J.-L. (1998) Scanning transmission electron microscopy study of the molecular mass of amphipol/cytochrome b6 f complexes. Biochimie 80:475–482.

    Article  Google Scholar 

  • Tribet, C., Vial, F. (2008) Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter 4:68–81.

    Article  ADS  Google Scholar 

  • Tsybovsky, Y., Orban, T., Molday, R.S., Taylor, D., Palczewski, K. (2013) Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–860.

    Article  Google Scholar 

  • Vahedi-Faridi, A., Jastrzebska, B., Palczewski, K., Engel, A. (2013) 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxf) 62:95–107.

    Article  Google Scholar 

  • Vaidehi, N., Grisshammer, R., Tate, C.G. (2016) How can mutations thermostabilize G protein-coupled receptors? Trends Pharmacol. Sci. 37:37–46.

    Article  Google Scholar 

  • van Pee, K., Neuhaus, A., D’Imprima, E., Mills, D.J., Kühlbrandt, W., Yildiz, Ö. (2017) CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of pneumolysin. eLlife 6:e23644.

    Google Scholar 

  • Vázquez-Acevedo, M., Vega-de Luna, F., Sánchez-Vásquez, L., Colina-Tenorio, L., Remacle, C., Cardol, P., Miranda-Astudillo, H., González-Halphen, D. (2016) Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. Biochim. Biophys. Acta 1857:1183–1190.

    Article  Google Scholar 

  • Vial, F., Cousin, F., Bouteiller, L., Tribet, C. (2009) Rate of permeabilization of giant vesicles by amphiphilic polyacrylates compared to the adsorption of these polymers onto large vesicles and tethered lipid bilayers. Langmuir 25:7506–7513.

    Article  Google Scholar 

  • Vial, F., Oukhaled, A.G., Auvray, L., Tribet, C. (2007) Long-living channels of well-defined radius opened in lipid bilayers by polydisperse, hydrophobically-modified polyacrylic acids. Soft Matter 3:75–78.

    Article  ADS  Google Scholar 

  • Vial, F., Rabhi, S., Tribet, C. (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862.

    Article  Google Scholar 

  • Wang, Z., Fan, G., Hryc, C.F., Blaza, J.N., Serysheva, I.I., Schmid, M.F., Chiu, W., Luisi, B.F., Du, D. (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 6:e24905.

    Google Scholar 

  • Watkinson, T.G., Calabrese, A.N., Ault, J.R., Radford, S.E., Ashcroft, A.E. (2017) FPOP-LC-MS/MS suggests differences in interaction sites of amphipols and detergents with outer membrane proteins. J. Am. Soc. Mass Spectrom. 28:50–55.

    Article  ADS  Google Scholar 

  • Watkinson, T.G., Calabrese, A.N., Giusti, F., Zoonens, M., Radford, S.E., Ashcroft, A.E. (2015) Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. Int. J. Mass Spectrom. 391:54–61.

    Article  Google Scholar 

  • Wei, R., Wang, X., Zhang, Y., Mukherjee, S., Zhang, L., Chen, Q., Huang, X., Jing, S., Liu, C., Li, S., Wang, G., Xu, Y., Zhu, S., Williams, A.J., Sun, F., Yin, C.C. (2016) Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res. 26:977–994.

    Article  Google Scholar 

  • Wheatley, M., Charlton, J., Jamshad, M., Routledge, S.J., Bailey, S., La-Borde, P.J., Azam, M.T., Logan, R.T., Bill, R.M., Dafforn, T.R., Poyner, D.R. (2016) GPCR–styrene maleic acid lipid particles (GPCR–SMALPs): their nature and potential. Biochem. Soc. Trans. 44:619–623.

    Article  Google Scholar 

  • Wickstrand, C., Dods, R., Royant, A., Neutze, R. (2015) Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim. Biophys. Acta 1850:536–553.

    Article  Google Scholar 

  • Wilkens, S. (2000) F1FO-ATP synthase–stalking mind and imagination. J. Bioenerg. Biomembr. 32:333–339.

    Article  Google Scholar 

  • Wilkens, S., Capaldi, R.A. (1998a) Electron microscopic evidence of two stalks linking the F1 and FO parts of the Escherichia coli ATP synthase. Biochim. Biophys. Acta 1365:93–97.

    Article  Google Scholar 

  • Wilkens, S., Capaldi, R.A. (1998b) ATP synthase's second stalk comes into focus. Nature 393:29.

    Article  ADS  Google Scholar 

  • Wilkens, S., Zhou, J., Nakayama, R., Dunn, S.D., Capaldi, R.A. (2000) Localization of the δ subunit in the Escherichia coli F1FO-ATPsynthase by immuno-electron microscopy: The δ subunit binds on top of the F1. J. Mol. Biol. 295:387–391.

    Article  Google Scholar 

  • Wilkes, M., Madej, M.G., Kreuter, L., Rhinow, D., Heinz, V., De Sanctis, S., Ruppel, S., Richter, R.M., Joos, F., Grieben, M., Pike, A.C., Huiskonen, J.T., Carpenter, E.P., Kühlbrandt, W., Witzgall, R., Ziegler, C. (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel polycystin-2. Nat. Struct. Mol. Biol. 24:123–130.

    Article  Google Scholar 

  • Wojtowicz, H., Prochnicka-Chalufour, A., de Amorim, G.C., Roudenko, O., Simenel, C., Malki, I., Pehau-Arnaudet, G., Gubellini, F., Koutsioubas, A., Pérez, J., Delepelaire, P., Delepierre, M., Fronzes, R., Izadi-Pruneyre, N. (2016) Structural basis of the signalling through a bacterial membrane receptor, HasR, deciphered by an integrative approach. Biochem. J. 473:2239–2248.

    Article  Google Scholar 

  • Wu, Z.S., Cui, Z.C., Cheng, H., Fan, C., Melcher, K., Jiang, Y., Zhang, C.H., Jiang, H.L., Cong, Y., Liu, Q., Xu, H.E. (2015) High yield and efficient expression and purification of the human 5-HT3A receptor. Acta Pharmacol. Sin. 36:1024–1032.

    Article  Google Scholar 

  • Zaccai, G. (2004) The effect of water on protein dynamics. Phil. Trans. R. Soc. Lond. B 359:1269–1275.

    Article  Google Scholar 

  • Zhang, N., Tsybovsky, Y., Kolesnikov, A.V., Rozanowska, M., Swider, M., Schwartz, S.B., Stone, E.M., Palczewska, G., Maeda, A., Kefalov, V.J., Jacobson, S.G., Cideciyan, A.V., Palczewski, K. (2015a) Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum. Mol. Genet. 24:3220–3237.

    Article  Google Scholar 

  • Zhang, R., Sahu, I.D., Liu, L., Osatuke, A., Comer, R.G., Dabney-Smith, C., Lorigan, G.A. (2015b) Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. Biochim. Biophys. Acta 1848:329–333.

    Article  Google Scholar 

  • Zoonens, M. (2004) Caractérisation des complexes formés entre le domaine transmembranaire de la protéine OmpA et des polymères amphiphiles, les amphipols. Application à l'étude structurale des protéines membranaires par RMN à haute résolution. Thèse de Doctorat, Université Paris-6, 233 p.

    Google Scholar 

  • Zoonens, M., Catoire, L.J., Giusti, F., Popot, J.-L. (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc. Natl. Acad. Sci. USA 102:8893–8898.

    Article  ADS  Google Scholar 

  • Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.

    Article  Google Scholar 

  • Zoonens, M., Popot, J.-L. (2014) Amphipols for each season. J. Membr. Biol. 247:759–796.

    Article  Google Scholar 

  • Zubcevic, L., Herzik, M.A., Jr., Chung, B.C., Liu, Z., Lander, G.C., Lee, S.-Y. (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23:180–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Formation and Properties of Membrane Protein/Amphipol Complexes. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_5

Download citation

Publish with us

Policies and ethics