Skip to main content

Nuclear Magnetic Resonance Studies of Amphipol-Trapped Membrane Proteins

  • Chapter
  • First Online:
Book cover Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1415 Accesses

Summary

Because they stabilize most membrane proteins as compared to detergent solutions and they trap them under the form of small particles, amphipols (APols) appear as an attractive potential medium for solution-state NMR (sNMR) studies. sNMR studies of APol-trapped membrane proteins have yielded information on the conformation of the proteins, their areas of contact with the polymer, their dynamics, their accessibility to water, and the structure of protein-bound ligands. They have benefited from the diversification of APol chemical structures and the availability of deuterated APols. The advantages and constraints of working with APols are discussed and compared to those associated with other nonconventional media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Althoff, T., Mills, D.J., Popot, J.-L., Kühlbrandt, W. (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30:4652–4664.

    Article  Google Scholar 

  • Anglister, J., Grzesiek, S., Ren, H., Klee, C.B., Bax, A. (1993) Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS. J. Biomol. NMR 3:121–126.

    Article  Google Scholar 

  • Arnold, T., Poynor, M., Nussberger, S., Lupas, A.N., Linke, D. (2007) Gene duplication of the eight-stranded β-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane β-barrels. J. Mol. Biol. 366:1174–1184.

    Article  Google Scholar 

  • Arora, A., Abildgaard, F., Bushweller, J.H., Tamm, L.K. (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8:334–338.

    Article  Google Scholar 

  • Arunmanee, W., Harris, J.R., Lakey, J.H. (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J. Membr. Biol. 247:949–956.

    Article  Google Scholar 

  • Banères, J.-L., Popot, J.-L., Mouillac, B. (2011) New advances in production and functional folding of G protein-coupled receptors. Trends Biotechnol. 29:314–322.

    Article  Google Scholar 

  • Bax, A., Kontaxis, G., Tjandra, N. (2001) Dipolar couplings in macromolecular structure determination. Meth. Enzymol. 339:127–174.

    Article  Google Scholar 

  • Bayburt, T.H., Grinkova, Y.V., Sligar, S.G. (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2:853–856.

    Article  ADS  Google Scholar 

  • Bazzacco, P. (2009) Non-ionic amphipols: new tools for in vitro studies of membrane proteins. Validation and development of biochemical and biophysical applications. Thèse de Doctorat, Université Paris-7, 176 p.

    Google Scholar 

  • Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.

    Article  Google Scholar 

  • Bazzacco, P., Sharma, K.S., Durand, G., Giusti, F., Ebel, C., Popot, J.-L., Pucci, B. (2009) Trapping and stabilization of integral membrane proteins by hydrophobically grafted glucose-based telomers. Biomacromolecules 10:3317–3326.

    Article  Google Scholar 

  • Beaugrand, M., Arnold, A.A., Juneau, A., Balieiro Gambaro, A., Warschawski, D.E., Williamson, P.T.F., Marcotte, I. (2016) Magnetically oriented bicelles with monoalkylphosphocholines: versatile membrane mimetics for nuclear magnetic resonance applications. Langmuir 32:13244–13251.

    Article  Google Scholar 

  • Bersch, B., Dörr, J.M., Hessel, A., Killian, J.A., Schanda, P. (2017) Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native nanodiscs. Angew. Chem. Int. Ed. 56:2508–2512.

    Article  Google Scholar 

  • Böckmann, R.A., Caflisch, A. (2005) Spontaneous formation of detergent micelles around the outer membrane protein OmpX. Biophys. J. 88:3191–3204.

    Article  Google Scholar 

  • Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B. (1999) Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 99:2293–2352.

    Article  Google Scholar 

  • Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Banères, J.-L., Catoire, L.J. (2016) Functional modulation of a GPCR conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138:11170–11175

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Baaden, M., Guittet, E., Banères, J.-L. (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J. Biomol. NMR 50:191–195.

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Giusti, F., Martin, A., van Heijenoort, C., Popot, J.-L., Guittet, E., Banères, J.-L. (2010a) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132:9049–9057.

    Article  Google Scholar 

  • Catoire, L.J., Warnet, X.L., Warschawski, D.E. (2014) Micelles, bicelles, amphipols, nanodiscs, liposomes or intact cells: The hitch-hiker guide to the study of membrane proteins by NMR, in: Mus-Veteau, I., ed., Membrane Protein Production for Structural Analysis. Springer, pp. 315–346.

    Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Guittet, E., Popot, J.-L. (2010b) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur. Biophys. J. 39:623–630.

    Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Popot, J.-L., Guittet, E. (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J. Magn. Res. 197:91–95.

    ADS  Google Scholar 

  • Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M. (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275:18623–18637.

    Google Scholar 

  • Charvolin, D., Perez, J.-B., Rouvière, F., Giusti, F., Bazzacco, P., Abdine, A., Rappaport, F., Martinez, K.L., Popot, J.-L. (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc. Natl. Acad. Sci. USA 106:405–410.

    Article  ADS  Google Scholar 

  • Chill, J.H., Louis, J.M., Baber, J.L., Bax, A. (2006a) Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel. J. Biomol. NMR 36:123–136.

    Article  Google Scholar 

  • Chill, J.H., Louis, J.M., Miller, M., Bax, A. (2006b) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci. 15:684–698.

    Article  Google Scholar 

  • Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T., Bax, A. (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Am. Chem. Soc. 124:2450–2451.

    Article  Google Scholar 

  • Dahmane, T. (2007) Protéines membranaires et amphipols : stabilisation, fonction, renaturation, et développement d'amphipols sulfonatés pour la RMN des solutions. Thèse de Doctorat, Université Paris-7, 229 p.

    Google Scholar 

  • Dahmane, T., Damian, M., Mary, S., Popot, J.-L., Banères, J.-L. (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521.

    Article  Google Scholar 

  • Dahmane, T., Giusti, F., Catoire, L.J., Popot, J.-L. (2011) Sulfonated amphipols: Synthesis, properties and applications. Biopolymers 95:811–823.

    Article  Google Scholar 

  • Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.

    Article  Google Scholar 

  • Denisov, I.G., Grinkova, Y.V., Lazarides, A.A., Sligar, S.G. (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126:3477–3487.

    Article  Google Scholar 

  • Diab, C., Tribet, C., Gohon, Y., Popot, J.-L., Winnik, F.M. (2007a) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim. Biophys. Acta 1768:2737–2747.

    Article  Google Scholar 

  • Diab, C., Winnik, F.M., Tribet, C. (2007b) Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir 23:3025–3035.

    Article  Google Scholar 

  • Dupont, M., Dé, E., Chollet, R., Chevalier, J., Pagès, J.-M. (2004) Enterobacter aerogenes OmpX, a cation-selective channel mar- and osmo-regulated. FEBS Lett. 569:27–30.

    Article  Google Scholar 

  • Elter, S., Raschle, T., Arens, S., Viegas, A., Gelev, V., Etzkorn, M., Wagner, G. (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J. Membr. Biol. 247:957–964.

    Article  Google Scholar 

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., Wagner, G. (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401.

    Article  Google Scholar 

  • Etzkorn, M., Zoonens, M., Catoire, L.J., Popot, J.-L., Hiller, S. (2014) How amphipols embed membrane proteins: Global solvent accessibility and interaction with a flexible protein terminus. J. Membr. Biol. 247:965–970.

    Article  Google Scholar 

  • Feinstein, H.E., Tifrea, D., Sun, G., Popot, J.-L., de la Maza, L.M., Cocco, M.J. (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J. Membr. Biol. 247:1053–1065.

    Article  Google Scholar 

  • Fernández, C., Adeishvili, K., Wüthrich, K. (2001a) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc. Natl. Acad. Sci. USA 98:2358–2363.

    Article  ADS  Google Scholar 

  • Fernández, C., Hilty, C., Bonjour, S., Adeishvili, K., Pervushin, K., Wüthrich, K. (2001b) Solution NMR studies of the integral membrane proteins OmpX and OmpA from Escherichia coli. FEBS Lett. 504:173–178.

    Article  Google Scholar 

  • Fernández, C., Hilty, C., Wider, G., Guntert, P., Wüthrich, K. (2004) NMR structure of the integral membrane protein OmpX. J. Mol. Biol. 336:1211–1221.

    Article  Google Scholar 

  • Früh, V., IJzerman, A.P., Siegal, G. (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem. Rev. 111:640–656.

    Article  Google Scholar 

  • Gardner, K.H., Kay, L.E. (1998) The use of 2H,13C,15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27:357–406.

    Article  Google Scholar 

  • Gautier, A., Mott, H.R., Bostock, M.J., Kirkpatrick, J.P., Nietlispach, D. (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17:768–774.

    Article  Google Scholar 

  • Giusti, F., Kessler, P., Westh Hansen, R., Della Pia, E.A., Le Bon, C., Mourier, G., Popot, J.-L., Martinez, K.L., Zoonens, M. (2015) Synthesis of a polyhistidine-bearing amphipol and its use for immobilizing membrane proteins. Biomacromolecules 16:3751–3761.

    Article  Google Scholar 

  • Giusti, F., Rieger, J., Catoire, L., Qian, S., Calabrese, A.N., Watkinson, T.G., Casiraghi, M., Radford, S.E., Ashcroft, A.E., Popot, J.-L. (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J. Membr. Biol. 247:909–924.

    Article  Google Scholar 

  • Glück, J.M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D., Koenig, B.W. (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J. Am. Chem. Soc. 131:12060–12061.

    Article  Google Scholar 

  • Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.

    Article  ADS  Google Scholar 

  • Gohon, Y., Giusti, F., Prata, C., Charvolin, D., Timmins, P., Ebel, C., Tribet, C., Popot, J.-L. (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290.

    Article  Google Scholar 

  • Gohon, Y., Pavlov, G., Timmins, P., Tribet, C., Popot, J.-L., Ebel, C. (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal. Biochem. 334:318–334.

    Article  Google Scholar 

  • Griesinger, C., Bennati, M., Vieth, H.M., Luchinat, C., Parigi, G., Höfer, P., Engelke, F., Glaser, S.J., Denysenkov, V., Prisner, T.F. (2012) Dynamic nuclear polarization at high magnetic fields in liquids. Prog. Nucl. Magn. Reson. Spectrosc. 64:4–28.

    Article  Google Scholar 

  • Hagn, F., Etzkorn, M., Raschle, T., Wagner, G. (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135:1919–1925.

    Article  Google Scholar 

  • Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., Wagner, G. (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210.

    Article  ADS  Google Scholar 

  • Hilty, C., Wider, G., Fernández, C., Wüthrich, K. (2004) Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. ChemBioChem 5:467–473.

    Article  Google Scholar 

  • Hiruma-Shimizu, K., Shimizu, H., Thompson, G.S., Kalverda, A.P., Patching, S.G. (2015) Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol. Membr. Biol. 32:139–155.

    Article  Google Scholar 

  • Hong, H., Szabo, G., Tamm, L.K. (2006) Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening. Nat. Chem. Biol. 2:627–635.

    Article  Google Scholar 

  • Howell, S.C., Mesleh, M.F., Opella, S.J. (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44:5196–5206.

    Article  Google Scholar 

  • Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2014) Application of amphipols for structure-functional analysis of TRP channels. J. Membr. Biol. 247:843–851.

    Article  Google Scholar 

  • Kang, C.B., Li, Q. (2011) Solution NMR study of integral membrane proteins. Curr. Opin. Struct. Biol. 15:560–569.

    Article  Google Scholar 

  • Kaplan, M., Pinto, C., Houben, K., Baldus, M. (2016) Nuclear magnetic resonance (NMR) applied to membrane-protein complexes. Quart. Rev. Biophys. 49:1–25.

    Article  Google Scholar 

  • Kay, L.E. (2001) Nuclear magnetic resonance methods for high molecular weight proteins: a study involving a complex of maltose binding protein and betacyclodextrin. Meth. Enzymol. 339B:174–203.

    Article  Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R., Bax, A. (1990) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89:496–514.

    ADS  Google Scholar 

  • Kim, H.M., Howell, S.C., Van Horn, W.D., Jeon, Y.H., Sanders, C.R. (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Progr. Nucl. Magn. Reson. Spectrosc. 55:335–360.

    Article  Google Scholar 

  • Klammt, C., Perrin, M.-H., Maslennikov, I., Renault, L., Krupa, M., Kwiatkowski, W., Stahlberg, H., Vale, W., Choe, S. (2011) Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents. Prot. Sci. 20:1030–1041.

    Article  Google Scholar 

  • Kraft, T.E., Hresko, R.C., Hruz, P.W. (2015) Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4. Protein Sci. 24:2008–2019.

    Article  Google Scholar 

  • Le Bon, C., Della Pia, E.A., Giusti, F., Lloret, N., Zoonens, M., Martinez, K.L., Popot, J.-L. (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. 42:e83.

    Article  Google Scholar 

  • Le Bon, C., Popot, J.-L., Giusti, F. (2014b) Labeling and functionalizing amphipols for biological applications. J. Membr. Biol. 247:797–814.

    Article  Google Scholar 

  • Lee, D., Hilty, C., Wider, G., Wüthrich, K. (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J. Magn. Reson. 178:72–76.

    Article  ADS  Google Scholar 

  • Lee, D., Walter, K.F., Brückner, A.K., Hilty, C., Becker, S., Griesinger, C. (2008) Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J. Am. Chem. Soc. 130:13822–13823.

    Article  Google Scholar 

  • Li, D., Li, J., Zhuang, Y., Zhang, L., Xiong, Y., Shi, P., Tian, C. (2015) Nano-size uni-lamellar lipodisq-improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using 19F nuclear magnetic resonance. Protein Cell 6:229–233.

    Article  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr. Opin. Struct. Biol. 27:1–7.

    Article  Google Scholar 

  • MacKenzie, K.R., Prestegard, J.H., Engelman, D.M. (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133.

    Article  Google Scholar 

  • Marcotte, I., Auger, M. (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magn. Reson. 24A:17–37.

    Article  Google Scholar 

  • Martinez, K.L., Gohon, Y., Corringer, P.-J., Tribet, C., Mérola, F., Changeux, J.-P., Popot, J.-L. (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 528:251–256.

    Article  Google Scholar 

  • Milić, D., Veprintsev, D.B. (2015) Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Frontiers Pharmacol. 6:66.

    Google Scholar 

  • Mineev, K.S., Nadezhdin, K.D. (2017) Membrane mimetics for solution NMR studies of membrane proteins. Nanotech. Rev. 6:15–32.

    Google Scholar 

  • Nietlispach, D., Gautier, A. (2011) Solution NMR studies of polytopic alpha-helical membrane proteins. Curr. Opin. Struct. Biol. 21:497–508.

    Article  Google Scholar 

  • Opella, S.J., Marassi, F.M. (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104:3587–3606.

    Article  Google Scholar 

  • Opella, S.J., Marassi, F.M. (2017) Applications of NMR to membrane proteins. Arch. Biochem. Biophys. 628:92–101.

    Article  Google Scholar 

  • Page, R.C., Moore, J.D., Nguyen, H.B., Sharma, M., Chase, R., Gao, F.P., Mobley, C.K., Sanders, C.R., Ma, L., Sönnichsen, F.D., Lee, S., Howell, S.C., Opella, S.J., Cross, T.A. (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J. Struct. Func. Genom. 7:51–64.

    Article  Google Scholar 

  • Patching, S.G. (2011) NMR structures of polytopic integral membrane proteins. Mol. Membr. Biol. 28:370–397.

    Article  Google Scholar 

  • Patching, S.G. (2015) Solid-state NMR structures of integral membrane proteins. Mol. Membr. Biol. 32:156–178.

    Article  Google Scholar 

  • Pautsch, A., Schulz, G.E. (1998) Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5:1013–1017.

    Article  Google Scholar 

  • Pautsch, A., Schulz, G.E. (2000) High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298:273–282.

    Article  Google Scholar 

  • Pautsch, A., Vogt, J., Model, K., Siebold, C., Schulz, G.E. (1999) Strategy for membrane protein crystallization exemplified with OmpA and OmpX. Proteins 34:167–172.

    Article  Google Scholar 

  • Perlmutter, J.D., Popot, J.-L., Sachs, J.N. (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J. Membr. Biol. 247:883–895.

    Article  Google Scholar 

  • Perry, T., Souabni, H., Rapisarda, C., Fronzes, R., Giusti, F., Popot, J.-L., Zoonens, M., Gubellini, F. (2018) Visualizing transmembrane regions of protein complexes by electron microscopy using biotinylated amphipols, submitted for publication.

    Google Scholar 

  • Pervushin, K.V., Riek, R., Wider, G., Wüthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94:12366–12371.

    Article  ADS  Google Scholar 

  • Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.-L., Champeil, P. (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869.

    Article  Google Scholar 

  • Planchard, N., Point, E., Dahmane, T., Giusti, F., Renault, M., Le Bon, C., Durand, G., Milon, A., Guittet, E., Zoonens, M., Popot, J.-L., Catoire, L.J. (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J. Membr. Biol. 247:827–842.

    Article  Google Scholar 

  • Plesniak, L.A., Mahalakshmi, R., Rypien, C., Yang, Y., Racic, J., Marassi, F.M. (2011) Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. Biochim. Biophys. Acta 1808:482–489.

    Google Scholar 

  • Plevin, M.J., Boisbouvier, J. (2012) Isotope-labelling of methyl groups for NMR studies of large proteins, in: Clore, M., Potts, J., eds., Recent Developments in Biomolecular NMR, Royal Society of Chemistry, pp. 1–24.

    Google Scholar 

  • Pocanschi, C.L., Dahmane, T., Gohon, Y., Rappaport, F., Apell, H.-J., Kleinschmidt, J.H., Popot, J.-L. (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961.

    Article  Google Scholar 

  • Poget, S.F., Cahill, S.M., Girvin, M.E. (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J. Am. Chem. Soc. 129:2432–2433.

    Article  Google Scholar 

  • Poget, S.F., Girvin, M.E. (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim. Biophys. Acta 1768:3098–3106.

    Article  Google Scholar 

  • Popot, J.-L. (2010) Amphipols, nanodiscs, and fluorinated surfactants: Three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79:737–775.

    Article  Google Scholar 

  • Popot, J.-L. (2014) Folding membrane proteins in vitro: A table and some comments. Arch. Biochem. Biophys. 564:314–326.

    Article  ADS  Google Scholar 

  • Popot, J.-L., Engelman, D.M. (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18.

    Article  Google Scholar 

  • Postis, V., Rawson, S., Mitchell, J.K., Lee, S.C., Parslowc, R.A., Dafforn, T.R., Baldwin, S.A., Muench, S.P. (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848:496–501.

    Article  Google Scholar 

  • Prestegard, J.H., Al-Hashimi, H.M., Tolman, J.R. (2000) NMR structures of biomolecules using field-oriented media and residual dipolar couplings. Q. Rev. Biophys. 33:371–424.

    Article  Google Scholar 

  • Prosser, R.S., Evanics, F., Kitevski, J.L., Al-Abdul-Wahid, M.S. (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45:8453–8465.

    Article  Google Scholar 

  • Puthenveetil, R., Nguyen, K., Vinogradova, O. (2017) Nanodiscs and solution NMR: preparation, application and challenges. Nanotech. Rev. 6:111–126.

    Google Scholar 

  • Qureshi, T., Goto, N.K. (2011) Contemporary methods in structure determination of membrane proteins by solution NMR. Top. Curr. Chem.

    Google Scholar 

  • Raschle, T., Hiller, S., Etzkorn, M., Wagner, G. (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20:471–479.

    Article  Google Scholar 

  • Raschle, T., Hiller, S., Yu, T.Y., Rice, A.J., Walz, T., Wagner, G. (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131:17777–17779.

    Article  Google Scholar 

  • Rinaldi, P.L. (1983) Heteronuclear 2D-NOE spectroscopy. J. Am. Chem. Soc. 105:5167–5168.

    Article  Google Scholar 

  • Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G. (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464:211–231.

    Article  Google Scholar 

  • Salzmann, M., Wider, G., Pervushin, K., Wüthrich, K. (1999) Improved sensitivity and coherence selection for [15N,1H]-TROSY elements in triple resonance experiments. J. Biomol. NMR 15:181–184.

    Article  Google Scholar 

  • Sanders, C.R., Oxenoid, K. (2000) Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. Biochim. Biophys. Acta 1508:129–145.

    Article  Google Scholar 

  • Sanders, C.R., Prosser, R.S. (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234.

    Article  Google Scholar 

  • Sanders, C.R., Sönnichsen, F. (2006) Solution NMR of membrane proteins: practice and challenges. Magn. Reson. Chem. 44:S24-S40.

    Article  Google Scholar 

  • Schweizer, M., Hindennach, I., Garten, W., Henning, U. (1978) Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur. J. Biochem. 82:211–217.

    Article  Google Scholar 

  • Sharma, K.S., Durand, G., Gabel, F., Bazzacco, P., Le Bon, C., Billon-Denis, E., Catoire, L.J., Popot, J.-L., Ebel, C., Pucci, B. (2012) Non-ionic amphiphilic homopolymers: Synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639.

    Article  Google Scholar 

  • Sharma, K.S., Durand, G., Giusti, F., Olivier, B., Fabiano, A.-S., Bazzacco, P., Dahmane, T., Ebel, C., Popot, J.-L., Pucci, B. (2008) Glucose-based amphiphilic telomers designed to keep membrane proteins soluble in aqueous solutions: synthesis and physico-chemical characterization. Langmuir 24:13581–13590.

    Article  Google Scholar 

  • Shenkarev, Z.O., Lyukmanova, E.N., Paramonov, A.S., Shingarova, L.N., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., Arseniev, A.S. (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J. Am. Chem. Soc. 132:5628–5629.

    Article  Google Scholar 

  • Sim, D.-W., Lu, Z., Won, H.-S., Lee, S.-N., Seo, M.D., Lee, B.-J., Kim, J.-H. (2017) Application of solution NMR to structural studies on α-helical integral membrane proteins. Molecules 22:1347.

    Article  Google Scholar 

  • Sólyom, Z., Ma, P., Schwarten, M., Bosco, M.I., Polidori, A., Durand, G., Willbold, D., Brutscher, B. (2015) The disordered region of the HCV protein NS5A: conformational dynamics, SH3 binding, and phosphorylation. Biophys. J. 109:1483–1496.

    Article  ADS  Google Scholar 

  • Sprangers, R., Velyvis, A., Kay, L.E. (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat. Meth. 4:697–703.

    Article  Google Scholar 

  • Sugiura, M., Beierbeck, H., Bélanger, P.C., Kotovych, G. (1984) Conformational analysis of leukotriene B4 in solution based on high-field nuclear magnetic resonance measurements. J. Am. Chem. Soc. 106:4021–4025.

    Article  Google Scholar 

  • Sverzhinsky, A., Qian, S., Yang, L., Allaire, M., Moraes, I., Ma, D., Chung, J.W., Zoonens, M., Popot, J.-L., Coulton, J.W. (2014) Amphipol-trapped ExbB-ExbD membrane protein complex from Escherichia coli: A biochemical and structural case study. J. Membr. Biol. 247:1005–1018.

    Article  Google Scholar 

  • Tapaneeyakorn, S., Goddard, A.D., Oates, J., Willis, C.L., Watts, A. (2011) Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim. Biophys. Acta 1808:1462–1475.

    Article  Google Scholar 

  • Tehei, M., Perlmutter, J.D., Giusti, F., Sachs, J.N., Zaccai, G., Popot, J.-L. (2014) Thermal fluctuations in amphipol A8-35 particles: A neutron scattering and molecular dynamics study. J. Membr. Biol. 247:897–908.

    Article  Google Scholar 

  • Tifrea, D.F., Pal, S., Cocco, M.J., Popot, J.-L., de la Maza, L.M. (2014) Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with C. muridarum. J. Immunol. 192:5201–5213.

    Article  Google Scholar 

  • Tifrea, D.F., Sun, G., Pal, S., Zardeneta, G., Cocco, M.J., Popot, J.-L., de la Maza, L.M. (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631.

    Article  Google Scholar 

  • Torchia, D.A. (2015) NMR studies of dynamic biomolecular conformational ensembles. Prog. Nucl. Magn. Reson. Spectrosc. 84-85:14–32.

    Article  Google Scholar 

  • Triba, M.N., Warschawski, D.E., Devaux, P.F. (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys. J. 88:1887–1901.

    Article  Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93:15047–15050.

    Article  ADS  Google Scholar 

  • Tugarinov, V., Kanelis, V., Kay, L.E. (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1:749–754.

    Article  Google Scholar 

  • Van Horn, W.D., Kim, H.J., Ellis, C.D., Hadziselimovic, A., Sulistijo, E.S., Karra, M.D., Tian, C., Sönnichsen, F.D., Sanders, C.R. (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729.

    Article  ADS  Google Scholar 

  • Viegas, A., Viennet, T., Etzkorn, M. (2016) The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol. Chem. 397:1335–1354.

    Article  Google Scholar 

  • Vogt, J., Schulz, G.E. (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7:1301–1309.

    Article  Google Scholar 

  • Vold, R.R., Prosser, R.S. (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J. Magn. Reson. B113:267–271.

    Article  Google Scholar 

  • Wang, G. (2008) NMR of membrane-associated peptides and proteins. Curr. Protein Pept. Sci. 9:50–69.

    Article  Google Scholar 

  • Warschawski, D.E., Arnold, A.A., Beaugrand, M., Gravel, A., Chartrand, E., Marcotte, I. (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim. Biophys. Acta 1808:1957–1974.

    Article  Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York, NY, USA, 320 p.

    Google Scholar 

  • Yu, C., Levy, G.C. (1983) Solvent and intramolecular proton dipolar relaxation of the three phosphates of ATP: a heteronuclear 2D study. J. Am. Chem. Soc. 105:6994–6996.

    Article  Google Scholar 

  • Yu, L., Sun, C., Song, D., Shen, J., Xu, N., Gunasekera, A., Hajduk, P.J., Olejniczak, E.T. (2005) Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Biochemistry 44:15834–15841.

    Article  Google Scholar 

  • Zhou, H.X., Cross, T.A. (2013) Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 42:361–392.

    Article  Google Scholar 

  • Zoonens, M. (2004) Caractérisation des complexes formés entre le domaine transmembranaire de la protéine OmpA et des polymères amphiphiles, les amphipols. Application à l'étude structurale des protéines membranaires par RMN à haute résolution. Thèse de Doctorat, Université Paris-6, 233 p.

    Google Scholar 

  • Zoonens, M., Catoire, L.J., Giusti, F., Popot, J.-L. (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc. Natl. Acad. Sci. USA 102:8893–8898.

    Article  ADS  Google Scholar 

  • Zoonens, M., Comer, J., Masscheleyn, S., Pebay-Peyroula, E., Chipot, C.J., Miroux, B., Dehez, F. (2013) Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J. Am. Chem. Soc. 135:15174–15182.

    Article  Google Scholar 

  • Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Nuclear Magnetic Resonance Studies of Amphipol-Trapped Membrane Proteins. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_10

Download citation

Publish with us

Policies and ethics