Skip to main content

Exploring Graphs with Time Constraints by Unreliable Collections of Mobile Robots

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10706)

Abstract

A graph environment must be explored by a collection of mobile robots. Some of the robots, a priori unknown, may turn out to be unreliable. The graph is weighted and each node is assigned a deadline. The exploration is successful if each node of the graph is visited before its deadline by a reliable robot. The edge weight corresponds to the time needed by a robot to traverse the edge. Given the number of robots which may crash, is it possible to design an algorithm, which will always guarantee the exploration, independently of the choice of the subset of unreliable robots by the adversary? We find the optimal time, during which the graph may be explored. Our approach permits to find the maximal number of robots, which may turn out to be unreliable, and the graph is still guaranteed to be explored.

We concentrate on line graphs and rings, for which we give positive results. We start with the case of the collections involving only reliable robots. We give algorithms finding optimal times needed for exploration when the robots are assigned to fixed initial positions as well as when such starting positions may be determined by the algorithm. We extend our consideration to the case when some number of robots may be unreliable. Our most surprising result is that solving the line exploration problem with robots at given positions, which may involve crash-faulty ones, is NP-hard. The same problem has polynomial solutions for a ring and for the case when the initial robots’ positions on the line are arbitrary. The exploration problem is shown to be NP-hard for star graphs, even when the team consists of only two reliable robots.

Keywords

  • Fault
  • Deadline
  • Exploration
  • Graph
  • Line
  • NP-hard
  • Ring
  • Robot
  • Star graph

J. Czyzowicz—Research supported in part by NSERC Discovery grant.

E. Kranakis—Research supported in part by NSERC Discovery grant.

A. Labourel—Research partially supported by the ANR project MACARON (anr-13-js02-0002).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We remind the reader that all robots move with identical unit speed.

References

  1. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Klasing, R., Kociumaka, T., Pająk, D.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_13

    CrossRef  Google Scholar 

  3. Bock, S.: Solving the traveling repairman problem on a line with general processing times and deadlines. Eur. J. Oper. Res. 244(3), 690–703 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22450-8_27

    CrossRef  Google Scholar 

  5. Christofides, N., Campos, V., Corberán, A., Mota, E.: An algorithm for the rural postman problem on a directed graph. Math. Program. Study 26, 155–166 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Google Scholar 

  7. Corberán, A., Sanchis, J.M.: A polyhedral approach to the rural postman problem. Eur. J. Oper. Res. 79(1), 95–114 (1994)

    CrossRef  MATH  Google Scholar 

  8. Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Search on a line with Byzantine robots. In: ISAAC, LIPCS (2016)

    Google Scholar 

  9. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8_10

    CrossRef  Google Scholar 

  10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: PODC, pp. 405–414 (2016)

    Google Scholar 

  11. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361(2), 342–355 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: the rural postman problem. Oper. Res. 43(3), 399–414 (1995)

    CrossRef  MATH  Google Scholar 

  13. Flocchini, P.: Time-varying graphs and dynamic networks. In: 2015 Summer Solstice: 7th International Conference on Discrete Models of Complex Systems (2015)

    Google Scholar 

  14. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and deadlines. SIAM J. Comput. 6(3), 416–426 (1977)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman, New York (2002)

    Google Scholar 

  17. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Software Track, vol. 2, pp. 693–702. IEEE (1989). Also, in Handbook of Scheduling Algorithms, Models, and Performance Analysis. CRC Press (2004)

    Google Scholar 

  18. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6(3), 434–451 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 513–522. ACM (2010)

    Google Scholar 

  20. Lawler, E.L.: Optimal sequencing of a single machine subject to precedence constraints. Manag. Sci. 19(5), 544–546 (1973)

    CrossRef  MATH  Google Scholar 

  21. Mitrovic-Minic, S., Krishnamurti, R.: The multiple traveling salesman problem with time windows: bounds for the minimum number of vehicles. Simon Fraser University TR-2002-11 (2002)

    Google Scholar 

  22. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with time windows. Networks 22(3), 263–282 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Young, G.H., Chan, C.-L.: Single-vehicle scheduling with time window constraints. J. Sched. 2(4), 175–187 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euripides Markou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J., Godon, M., Kranakis, E., Labourel, A., Markou, E. (2018). Exploring Graphs with Time Constraints by Unreliable Collections of Mobile Robots. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_27

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)