Neuromuscular Respiratory Failure

Chapter

Abstract

Respiratory failure can be the result of impairment in the central control of respiration, neuromuscular disorders or due to intrinsic lung problems. In the neuromuscular causes of respiratory failure, several factors like upper airway problems, inspiratory/expiratory muscle weakness, low tidal volumes, etc. can be contributory. Features like rapid shallow breathing, use of accessory muscles of respiration, cough after swallowing, and paradoxical breathing point towards the possibility of impending respiratory failure. For physicians treating neuromuscular disorders, identification of early signs of impending respiratory failure is crucial for better patient outcomes. In this chapter, we review the physiology and pathology of respiration in the setting of neuromuscular disorders along with objective assessment of respiratory failure.

Keywords

Respiratory failure Myasthenia gravis Guillain-Barré syndrome Diaphragm Intubation Mechanical ventilation Vital capacity Maximal inspiratory force Maximal expiratory force Neuromuscular 

References

  1. 1.
    Ratnovsky A, Elad D, Halpern P. Mechanics of respiratory muscles. Respir Physiol Neurobiol. 2008;163(1–3):82–9.CrossRefGoogle Scholar
  2. 2.
    Caruso P, Albuquerque AL, Santana PV, Cardenas LZ, Ferreira JG, Prina E, et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol. 2015;41(2):110–23.CrossRefGoogle Scholar
  3. 3.
    Celli BR. Respiratory muscle function. Clin Chest Med. 1986;7(4):567–84.PubMedGoogle Scholar
  4. 4.
    Sieck GC. Physiological effects of diaphragm muscle denervation and disuse. Clin Chest Med. 1994;15(4):641–59.PubMedGoogle Scholar
  5. 5.
    Mantilla CB, Sieck GC. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol. 2011;179(1):57–63.CrossRefGoogle Scholar
  6. 6.
    Mantilla CB, Seven YB, Zhan WZ, Sieck GC. Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol. 2010;173(1):101–6.CrossRefGoogle Scholar
  7. 7.
    Mantilla CB, Seven YB, Sieck GC. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment. Prog Brain Res. 2014;209:309–29.CrossRefGoogle Scholar
  8. 8.
    De Troyer A, Kirkwood PA, Wilson TA. Respiratory action of the intercostal muscles. Physiol Rev. 2005;85(2):717–56.CrossRefGoogle Scholar
  9. 9.
    De Troyer A, Estenne M. Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(3):899–906.PubMedGoogle Scholar
  10. 10.
    De Troyer A, Sampson MG. Activation of the parasternal intercostals during breathing efforts in human subjects. J Appl Physiol Respir Environ Exerc Physiol. 1982;52(3):524–9.PubMedGoogle Scholar
  11. 11.
    Rabinstein AA. Acute neuromuscular respiratory failure. Continuum. 2015;21(5 Neurocritical Care):1324–45.PubMedGoogle Scholar
  12. 12.
    Wilson TA, Legrand A, Gevenois PA, De Troyer A. Respiratory effects of the external and internal intercostal muscles in humans. J Physiol. 2001;530(Pt 2):319–30.CrossRefGoogle Scholar
  13. 13.
    Roussos C. Function and fatigue of respiratory muscles. Chest. 1985;88(2 Suppl):124S–32S.CrossRefGoogle Scholar
  14. 14.
    Butler JE, Hudson AL, Gandevia SC. The neural control of human inspiratory muscles. Prog Brain Res. 2014;209:295–308.CrossRefGoogle Scholar
  15. 15.
    Lee KZ, Fuller DD. Neural control of phrenic motoneuron discharge. Respir Physiol Neurobiol. 2011;179(1):71–9.CrossRefGoogle Scholar
  16. 16.
    McCrimmon DR, Ramirez JM, Alford S, Zuperku EJ. Unraveling the mechanism for respiratory rhythm generation. Bioessays. 2000;22(1):6–9.CrossRefGoogle Scholar
  17. 17.
    Feldman JL, Del Negro CA. Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci. 2006;7(3):232–42.CrossRefGoogle Scholar
  18. 18.
    Tian GF, Peever JH, Duffin J. Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat. Exp Brain Res. 1998;122(2):149–56.CrossRefGoogle Scholar
  19. 19.
    Tian GF, Peever JH, Duffin J. Bötzinger-complex, bulbospinal expiratory neurones monosynaptically inhibit ventral-group respiratory neurones in the decerebrate rat. Exp Brain Res. 1999;124(2):173–80.CrossRefGoogle Scholar
  20. 20.
    Butler JE, Gandevia SC. The output from human inspiratory motoneurone pools. J Physiol. 2008;586(5):1257–64.CrossRefGoogle Scholar
  21. 21.
    Butler JE. Drive to the human respiratory muscles. Respir Physiol Neurobiol. 2007;159(2):115–26.CrossRefGoogle Scholar
  22. 22.
    De Troyer A, Legrand A. Inhomogeneous activation of the parasternal intercostals during breathing. J Appl Physiol (1985). 1995;79(1):55–62.CrossRefGoogle Scholar
  23. 23.
    Hudson AL, Gandevia SC, Butler JE. Control of human inspiratory motoneurones during voluntary and involuntary contractions. Respir Physiol Neurobiol. 2011;179(1):23–33.CrossRefGoogle Scholar
  24. 24.
    Mehta S. Neuromuscular disease causing acute respiratory failure. Respir Care. 2006;51(9):1016–21; discussion 1021–3PubMedGoogle Scholar
  25. 25.
    Hutchinson D, Whyte K. Neuromuscular disease and respiratory failure. Pract Neurol. 2008;8(4):229–37.CrossRefGoogle Scholar
  26. 26.
    Hughes RA, Bihari D. Acute neuromuscular respiratory paralysis. J Neurol Neurosurg Psychiatry. 1993;56(4):334–43.CrossRefGoogle Scholar
  27. 27.
    Kelly BJ, Luce JM. The diagnosis and management of neuromuscular diseases causing respiratory failure. Chest. 1991;99(6):1485–94.CrossRefGoogle Scholar
  28. 28.
    Black LF, Hyatt RE. Maximal static respiratory pressures in generalized neuromuscular disease. Am Rev Respir Dis. 1971;103(5):641–50.PubMedGoogle Scholar
  29. 29.
    Vilke GM, Chan TC, Neuman T, Clausen JL. Spirometry in normal subjects in sitting, prone, and supine positions. Respir Care. 2000;45(4):407–10.PubMedGoogle Scholar
  30. 30.
    Allen SM, Hunt B, Green M. Fall in vital capacity with posture. Br J Dis Chest. 1985;79(3):267–71.CrossRefGoogle Scholar
  31. 31.
    Mier-Jedrzejowicz A, Brophy C, Moxham J, Green M. Assessment of diaphragm weakness. Am Rev Respir Dis. 1988;137(4):877–83.CrossRefGoogle Scholar
  32. 32.
    Syabbalo N. Assessment of respiratory muscle function and strength. Postgrad Med J. 1998;74(870):208–15.CrossRefGoogle Scholar
  33. 33.
    Braun NM, Arora NS, Rochester DF. Respiratory muscle and pulmonary function in polymyositis and other proximal myopathies. Thorax. 1983;38(8):616–23.CrossRefGoogle Scholar
  34. 34.
    Lawn ND, Fletcher DD, Henderson RD, Wolter TD, Wijdicks EF. Anticipating mechanical ventilation in Guillain-Barré syndrome. Arch Neurol. 2001;58(6):893–8.CrossRefGoogle Scholar
  35. 35.
    Durand MC, Porcher R, Orlikowski D, Aboab J, Devaux C, Clair B, et al. Clinical and electrophysiological predictors of respiratory failure in Guillain-Barré syndrome: a prospective study. Lancet Neurol. 2006;5(12):1021–8.CrossRefGoogle Scholar
  36. 36.
    Sharshar T, Chevret S, Bourdain F, Raphaël JC, French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Early predictors of mechanical ventilation in Guillain-Barré syndrome. Crit Care Med. 2003;31(1):278–83.CrossRefGoogle Scholar
  37. 37.
    Ito H, Fujita K, Kinoshita Y, Takanashi Y, Kusaka H. Phrenic nerve conduction in the early stage of Guillain-Barre syndrome might predict the respiratory failure. Acta Neurol Scand. 2007;116(4):255–8.CrossRefGoogle Scholar
  38. 38.
    Durand MC, Prigent H, Sivadon-Tardy V, Orlikowski D, Caudie C, Devaux C, et al. Significance of phrenic nerve electrophysiological abnormalities in Guillain-Barré syndrome. Neurology. 2005;65(10):1646–9.CrossRefGoogle Scholar
  39. 39.
    Walgaard C, Lingsma HF, Ruts L, Drenthen J, van Koningsveld R, Garssen MJ, et al. Prediction of respiratory insufficiency in Guillain-Barré syndrome. Ann Neurol. 2010;67(6):781–7.PubMedGoogle Scholar
  40. 40.
    Wu X, Li C, Zhang B, Shen D, Li T, Liu K, et al. Predictors for mechanical ventilation and short-term prognosis in patients with Guillain-Barré syndrome. Crit Care. 2015;19:310.CrossRefGoogle Scholar
  41. 41.
    Fourrier F, Robriquet L, Hurtevent JF, Spagnolo S. A simple functional marker to predict the need for prolonged mechanical ventilation in patients with Guillain-Barré syndrome. Crit Care. 2011;15(1):R65.CrossRefGoogle Scholar
  42. 42.
    Orlikowski D, Terzi N, Blumen M, Sharshar T, Raphael JC, Annane D, et al. Tongue weakness is associated with respiratory failure in patients with severe Guillain-Barré syndrome. Acta Neurol Scand. 2009;119(6):364–70.CrossRefGoogle Scholar
  43. 43.
    Paul BS, Bhatia R, Prasad K, Padma MV, Tripathi M, Singh MB. Clinical predictors of mechanical ventilation in Guillain-Barré syndrome. Neurol India. 2012;60(2):150–3.CrossRefGoogle Scholar
  44. 44.
    Toamad U, Kongkamol C, Setthawatcharawanich S, Limapichat K, Phabphal K, Sathirapanya P. Clinical presentations as predictors of prolonged mechanical ventilation in Guillain-Barré syndrome in an institution with limited medical resources. Singapore Med J. 2015;56(10):558–61.CrossRefGoogle Scholar
  45. 45.
    Sundar U, Abraham E, Gharat A, Yeolekar ME, Trivedi T, Dwivedi N. Neuromuscular respiratory failure in Guillain-Barre Syndrome: evaluation of clinical and electrodiagnostic predictors. J Assoc Physicians India. 2005;53:764–8.PubMedGoogle Scholar
  46. 46.
    Orlikowski D, Prigent H, Sharshar T, Lofaso F, Raphael JC. Respiratory dysfunction in Guillain-Barré syndrome. Neurocrit Care. 2004;1(4):415–22.CrossRefGoogle Scholar
  47. 47.
    Wijdicks EF, Roy TK. BiPAP in early Guillain-Barré syndrome may fail. Can J Neurol Sci. 2006;33(1):105–6.CrossRefGoogle Scholar
  48. 48.
    Nguyen TN, Badjatia N, Malhotra A, Gibbons FK, Qureshi MM, Greenberg SA. Factors predicting extubation success in patients with Guillain-Barré syndrome. Neurocrit Care. 2006;5(3):230–4.CrossRefGoogle Scholar
  49. 49.
    Lawn ND, Wijdicks EF. Post-intubation pulmonary function test in Guillain-Barré syndrome. Muscle Nerve. 2000;23(4):613–6.CrossRefGoogle Scholar
  50. 50.
    Walgaard C, Lingsma HF, van Doorn PA, van der Jagt M, Steyerberg EW, Jacobs BC. Tracheostomy or not: prediction of prolonged mechanical ventilation in Guillain-Barré syndrome. Neurocrit Care. 2017;26:6–13.CrossRefGoogle Scholar
  51. 51.
    Lawn ND, Wijdicks EF. Tracheostomy in Guillain-Barré syndrome. Muscle Nerve. 1999;22(8):1058–62.CrossRefGoogle Scholar
  52. 52.
    Rabinstein A, Wijdicks EF. BiPAP in acute respiratory failure due to myasthenic crisis may prevent intubation. Neurology. 2002;59(10):1647–9.CrossRefGoogle Scholar
  53. 53.
    Seneviratne J, Mandrekar J, Wijdicks EF, Rabinstein AA. Noninvasive ventilation in myasthenic crisis. Arch Neurol. 2008;65(1):54–8.CrossRefGoogle Scholar
  54. 54.
    Thomas CE, Mayer SA, Gungor Y, Swarup R, Webster EA, Chang I, et al. Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 1997;48(5):1253–60.CrossRefGoogle Scholar

Suggested Reading

  1. Butler JE, Hudson AL, Gandevia SC. The neural control of human inspiratory muscles. Prog Brain Res. 2014;209:295–308. (This paper describes the principle of neuromechanical matching in which neural drive is higher in the muscles with greatest mechanical advantage for inspiration to minimize metabolic costs).CrossRefGoogle Scholar
  2. Durand MC, Porcher R, Orlikowski D, Aboab J, Devaux C, Clair B, et al. Clinical and electrophysiological predictors of respiratory failure in Guillain-Barré syndrome: a prospective study. Lancet Neurol. 2006;5(12):1021–8. (In this study done in 154 patients with GBS found that proximal/distal peroneal CMAP ratio and vital capacity <81% predicted need of mechanical ventilation).CrossRefGoogle Scholar
  3. Lawn ND, Wijdicks EF. Post-intubation pulmonary function test in Guillain-Barré syndrome. Muscle Nerve. 2000;23(4):613–6. (In this study in 37 GBS patient on mechanical ventilation, the authors proposed the use of the PFS (Pulmonary Function Score) at day 12 to predict a duration of mechanical ventilation greater than 3 weeks).CrossRefGoogle Scholar
  4. Lawn ND, Fletcher DD, Henderson RD, Wolter TD, Wijdicks EF. Anticipating mechanical ventilation in Guillain-Barré syndrome. Arch Neurol. 2001;58(6):893–8. (Landmark paper in 114 GBS patients. It studied clinical and respiratory features associated with progression to mechanical ventilation in patients with GBS and proposed the now used 20/30/40 rule: VC<20 mL.kg, PImax<30 cmH2O and PEmax <40 cmH2O).CrossRefGoogle Scholar
  5. Rabinstein AA. Acute neuromuscular respiratory failure. Continuum. 2015;21(5 Neurocritical Care):1324–45. (Review of common causes, symptoms, and signs of acute neuromuscular respiratory failure, including Guillain-Barré syndrome and myasthenia gravis exacerbation).PubMedGoogle Scholar
  6. Ratnovsky A, Elad D, Halpern P. Mechanics of respiratory muscles. Respir Physiol Neurobiol. 2008;163(1–3):82–9. (This paper provides a brief description of the the inspiratory and expiratory muscles and their main function).CrossRefGoogle Scholar
  7. Seneviratne J, Mandrekar J, Wijdicks EF, Rabinstein AA. Noninvasive ventilation in myasthenic crisis. Arch Neurol. 2008;65(1):54–8. (In this retrospective study in 60 patients with myasthenic crisis, the authors describe the usefulness of Bipap to prevent intubation, except in cases with hypercapnia in the arterial blood gas).CrossRefGoogle Scholar
  8. Sharshar T, Chevret S, Bourdain F, Raphaël JC, French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Early predictors of mechanical ventilation in Guillain-Barré syndrome. Crit Care Med. 2003;31(1):278–83. (In this study in 722 patients with GBS, the authors found useful clinical features that can predict the need for mechanical ventilation such as: time of onset to admission <7 days, inability to cough, inability to stand, inability to lift elbows or head, liver enzyme elevation, and vital capacity <60%).CrossRefGoogle Scholar
  9. Thomas CE, Mayer SA, Gungor Y, Swarup R, Webster EA, Chang I, et al. Myasthenic crisis: clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 1997;48(5):1253–60. (Retrospective study in 53 patients with myasthenic crisis. The authors found that pre-intubation serum bicarbonate ≥30 mg/dl, peak vital capacity at day 1–6 post-intubation <25 mL/kg and age >50 can be used to predict duration of intubation longer than 2 weeks).CrossRefGoogle Scholar
  10. Walgaard C, Lingsma HF, Ruts L, Drenthen J, van Koningsveld R, Garssen MJ, et al. Prediction of respiratory insufficiency in Guillain-Barré syndrome. Ann Neurol. 2010;67(6):781–7. (Using a derivation and validation cohorts of 397 and 191 patients, respectively, this study proposed the EGRIS: Erasmus GBS Respiratory Insufficiency Score to predict the need for mechanical ventilation in patients with GBS).PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of NeurologyUniversity of MissouriColumbiaUSA

Personalised recommendations