Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSPEECHTECH))

Abstract

Microphone array (MA) involves several microphones positioned at diverse spatial locations. According to the sound propagation fundamentals, the multiple inputs can be handled to attenuate or to enhance the stemming signals from specific directions (desired signal) in the presence of demeaning noise sources (Levy et al. in IEEE Trans Audio Speech Lang Process 19(6):1540–1555, 2011 [1]; Doclo et al. in IEEE Signal Process Mag 32(2):18–30, 2015 [2]). This process is based on the known source location information, and the used MA to guarantee hands-free signal as well as noise sturdiness. Traditional classic microphones should be near the speaker either by wearing the microphone or by using movable microphone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy, A., Gannot, S., & Habets, E. A. (2011). Multiple-hypothesis extended particle filter for acoustic source localization in reverberant environments. IEEE Transactions on Audio, Speech and Language Processing, 19(6), 1540–1555.

    Article  Google Scholar 

  2. Doclo, S., Kellermann, W., Makino, S., & Nordholm, S. E. (2015). Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones. IEEE Signal Processing Magazine, 32(2), 18–30.

    Article  Google Scholar 

  3. Ryan, J. G., & Goubran, R. A. (2000). Array optimization applied in the near field of a microphone array. IEEE Transactions on Speech and Audio Processing, 8(2), 173–176.

    Article  Google Scholar 

  4. Benesty, J., Chen, J., & Huang, Y. (2008). Microphone array signal processing (Vol. 1). Berlin: Springer Science & Business Media.

    Google Scholar 

  5. Haimovich, A. M., Blum, R. S., & Cimini, L. J. (2008). MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 25(1), 116–129.

    Article  Google Scholar 

  6. Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.

    Article  MathSciNet  Google Scholar 

  7. Chan, S. C., & Chen, H. H. (2007). Uniform concentric circular arrays with frequency-invariant characteristics—theory, design, adaptive beamforming and DOA estimation. IEEE Transactions on Signal Processing, 55(1), 165–177.

    Article  MathSciNet  Google Scholar 

  8. Gorodetskaya, E. Y., Malekhanov, A. I., Sazontov, A. G., & Vdovicheva, N. K. (1999). Deep-water acoustic coherence at long ranges: Theoretical prediction and effects on large-array signal processing. IEEE Journal of Oceanic Engineering, 24(2), 156–171.

    Article  Google Scholar 

  9. Legay, H., & Shafai, L. (1994). New stacked microstrip antenna with large bandwidth and high gain. IEE Proceedings-Microwaves, Antennas and Propagation, 141(3), 199–204.

    Article  Google Scholar 

  10. Rodenbeck, C. T., Li, M. Y., & Chang, K. (2003). A novel millimeter-wave beam-steering technique using a dielectric-image line-fed grating film. IEEE Transactions on Antennas and Propagation, 51(9), 2203–2209.

    Article  Google Scholar 

  11. Krnac, B., & Haring, J. (2008, April). Improving of UHF RFID pattern steering by phased antenna array. In 2008 18th International Conference Radioelektronika (pp. 1–4). IEEE.

    Google Scholar 

  12. Cheng, D. K. (1971). Optimization techniques for antenna arrays. Proceedings of the IEEE, 59(12), 1664–1674.

    Article  Google Scholar 

  13. Brandstein, M., & Ward, D. (Eds.) (2013). Microphone arrays: Signal processing techniques and applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  14. Brandstein, M. S., Adcock, J. E., & Silverman, H. F. (1995). A practical time-delay estimator for localizing speech sources with a microphone array. Computer Speech & Language, 9(2), 153–169.

    Article  Google Scholar 

  15. Boone, M. M., Cho, W. H., & Ih, J. G. (2009). Design of a highly directional endfire loudspeaker array. Journal of the Audio Engineering Society, 57(5), 309–325.

    Google Scholar 

  16. Dmochowski, J. P., Benesty, J., & Affes, S. (2007). A generalized steered response power method for computationally viable source localization. IEEE Transactions on Audio, Speech and Language Processing, 15(8), 2510–2526.

    Article  Google Scholar 

  17. Rumsey, F., & McCormick, T. (2012). Sound and recording: An introduction. Boca Raton, FL: CRC Press.

    Google Scholar 

  18. Alexandridis, A., Griffin, A., & Mouchtaris, A. (2017). U.S. Patent No. 9,549,253. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  19. Roig, E. T. (2014). Eigenbeamforming array systems for sound source localization (Doctoral dissertation, Ph.D. thesis). Technical University of Denmark.

    Google Scholar 

  20. Zhu, N. (2011). Locating and extracting acoustic and neural signals (Doctoral dissertation). Wayne State University.

    Google Scholar 

  21. Brandstein, M., & Ward, D. (Eds.) (2013). Microphone arrays: Signal processing techniques and applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  22. Valin, J. M., Rouat, J., & Michaud, F. (2004, September). Enhanced robot audition based on microphone array source separation with post-filter. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004). Proceedings (Vol. 3, pp. 2123–2128). IEEE.

    Google Scholar 

  23. Perez-Meana, H. (Ed.) (2007). Advances in audio and speech signal processing: Technologies and applications. Hershey: Igi Global.

    Google Scholar 

  24. Huang, X., Baker, J., & Reddy, R. (2014). A historical perspective of speech recognition. Communications of the ACM, 57(1), 94–103.

    Article  Google Scholar 

  25. Markovich, S., Gannot, S., & Cohen, I. (2009). Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfering speech signals. IEEE Transactions on Audio, Speech and Language Processing, 17(6), 1071–1086.

    Article  Google Scholar 

  26. Kumar, L., Tripathy, A., & Hegde, R. M. (2014). Robust multi-source localization over planar arrays using music-group delay spectrum. IEEE Transactions on Signal Processing, 62(17), 4627–4636.

    Article  MathSciNet  Google Scholar 

  27. Ma, W. K., Vo, B. N., Singh, S. S., & Baddeley, A. (2006). Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach. IEEE Transactions on Signal Processing, 54(9), 3291–3304.

    Article  MATH  Google Scholar 

  28. Minotto, V. P., Jung, C. R., & Lee, B. (2014). Simultaneous-speaker voice activity detection and localization using mid-fusion of SVM and HMMs. IEEE Transactions on Multimedia, 16(4), 1032–1044.

    Article  Google Scholar 

  29. Brutti, A., & Nesta, F. (2013). Tracking of multidimensional TDOA for multiple sources with distributed microphone pairs. Computer Speech & Language, 27(3), 660–682.

    Article  Google Scholar 

  30. Plinge, A., Jacob, F., Haeb-Umbach, R., & Fink, G. A. (2016). Acoustic microphone geometry calibration: An overview and experimental evaluation of state-of-the-art algorithms. IEEE Signal Processing Magazine, 33(4), 14–29.

    Article  Google Scholar 

  31. Rafaely, B. (2005). Analysis and design of spherical microphone arrays. IEEE Transactions on Speech and Audio Processing, 13(1), 135–143.

    Article  Google Scholar 

  32. Li, Z., & Duraiswami, R. (2007). Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Transactions on Audio, Speech and Language Processing, 15(2), 702–714.

    Article  Google Scholar 

  33. Balmages, I., & Rafaely, B. (2007). Open-sphere designs for spherical microphone arrays. IEEE Transactions on Audio, Speech and Language Processing, 15(2), 727–732.

    Article  Google Scholar 

  34. https://www.mathworks.com/help/phased/ug/omnidirectional-microphone.html#btdemjn.

  35. Zaunschirm, M. (2012). Modal beamforming using planar circular microphone arrays (Doctoral dissertation, MS thesis). University of Music and Performing Arts Graz.

    Google Scholar 

  36. Duan, K., & Lü, B. (2003). Nonparaxial analysis of far-field properties of Gaussian beams diffracted at a circular aperture. Optics Express, 11(13), 1474–1480.

    Article  Google Scholar 

  37. Habets, E. A. P. (2007). Single- and multi-microphone speech dereverberation using spectral enhancement. Dissertation Abstracts International, 68(04).

    Google Scholar 

  38. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.

    Article  Google Scholar 

  39. Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., PortilloGuisado, R. C., Prats, M. M., … & Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on industrial electronics, 53(4), 1002–1016.

    Google Scholar 

  40. Omologo, M., Matassoni, M., & Svaizer, P. (2001). Speech recognition with microphone arrays. In Microphone arrays (pp. 331–353). Berlin: Springer.

    Google Scholar 

  41. Jensen, M. A., & Wallace, J. W. (2004). A review of antennas and propagation for MIMO wireless communications. IEEE Transactions on Antennas and Propagation, 52(11), 2810–2824.

    Article  Google Scholar 

  42. Kilfoyle, D. B., & Baggeroer, A. B. (2000). The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering, 25(1), 4–27.

    Article  Google Scholar 

  43. Saligrama, V., Alanyali, M., & Savas, O. (2006). Distributed detection in sensor networks with packet losses and finite capacity links. IEEE Transactions on Signal Processing, 54(11), 4118–4132.

    Article  MATH  Google Scholar 

  44. Li, J., & Stoica, P. (2005). Robust adaptive beamforming (Vol. 88). New York: Wiley.

    Google Scholar 

  45. Chen, J., Benesty, J., Huang, Y., & Doclo, S. (2006). New insights into the noise reduction Wiener filter. IEEE Transactions on Audio, Speech and Language Processing, 14(4), 1218–1234.

    Article  Google Scholar 

  46. Brandstein, M., & Ward, D. (Eds.) (2013). Microphone arrays: Signal processing techniques and applications. Berlin: Springer Science & Business Media.

    Google Scholar 

  47. Benjamin, R. (1983). Signal-space, the key to signal processing. Radio and Electronic Engineer, 53(11), 407–422.

    Article  Google Scholar 

  48. Tang, M. C., & Ziolkowski, R. W. (2013). Efficient, high directivity, large front-to-back-ratio, electrically small, near-field-resonant-parasitic antenna. IEEE Access, 1, 16–28.

    Article  Google Scholar 

  49. Sheikh, Y. A., Ullah, R., & Zhonfu, Y. (2016). Range and direction of arrival estimation of near-field sources in sensor arrays using differential evolution algorithm. International Journal of Computer Applications (IJCA), 139(4), 16–20.

    Google Scholar 

  50. Waweru, N. P., Konditi, D. B. O., & Langat, P. K. (2014). Performance analysis of MUSIC, root-MUSIC and ESPRIT DOA estimation algorithm. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 8(1), 209–216.

    Google Scholar 

  51. Fristrup, K. M., & Mennitt, D. (2012). Bioacoustical monitoring in terrestrial environments. Acoustics Today, 8(3), 16–24.

    Article  Google Scholar 

  52. O’Donovan, A., Duraiswami, R., & Neumann, J. (2007, June). Microphone arrays as generalized cameras for integrated audio visual processing. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07 (pp. 1–8). IEEE.

    Google Scholar 

  53. Gotsis, K. A., Siakavara, K., & Sahalos, J. N. (2009). On the direction of arrival (DoA) estimation for a switched-beam antenna system using neural networks. IEEE Transactions on Antennas and Propagation, 57(5), 1399–1411.

    Article  Google Scholar 

  54. DiBiase, J. H., Silverman, H. F., & Brandstein, M. S. (2001). Robust localization in reverberant rooms. In Microphone arrays (pp. 157–180). Berlin: Springer.

    Google Scholar 

  55. Zhao, F., & Guibas, L. J. (2004). Wireless sensor networks: An information processing approach. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  56. Valin, J. M., Michaud, F., Rouat, J., & Létourneau, D. (2003, October). Robust sound source localization using a microphone array on a mobile robot. In 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003). Proceedings (Vol. 2, pp. 1228–1233). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, N., Ashour, A.S. (2018). Microphone Array Principles. In: Direction of Arrival Estimation and Localization of Multi-Speech Sources. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-73059-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73059-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73058-5

  • Online ISBN: 978-3-319-73059-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics