Skip to main content

Informed Spatial Filtering Based on Constrained Independent Component Analysis

  • Chapter
  • First Online:
Audio Source Separation

Abstract

In this work, we present a linearly constrained signal extraction algorithm which is based on a Minimum Mutual Information (MMI) criterion that allows to exploit the three fundamental properties of speech and audio signals: Nonstationarity, Nonwhiteness, and Nongaussianity. Hence, the proposed method is very well suited for signal processing of nonstationary nongaussian broadband signals like speech. Furthermore, from the linearly constrained MMI approach, we derive an efficient realization in a (GSC) structure. To estimate the relative transfer functions between the microphones, which are needed for the set of linear constraints, we use an informed time-domain independent component analysis algorithm, which exploits some coarse direction-of-arrival information of the target source. As a decisive advantage, this simplifies the otherwise challenging control mechanism for simultaneous adaptation of the GSC’s blocking matrix und interference and noise canceler coefficients. Finally, we establish relations between the proposed method and other well-known multichannel linear filter approaches for signal extraction based on second-order-statistics, and demonstrate the effectiveness of the proposed signal extraction method in a multispeaker scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The approach of minimizing the output power in the presence of linear constraints was originally presented by Frost in [14] for use with antenna arrays, assuming free-field propagation.

  2. 2.

    Note that we chose this reverberation time in order to demonstrate the advantage of the HOS-based realization over the SOS-based realization of the MMI-based GSC.

Abbreviations

ICA:

Independent Component Analysis

BSS:

Blind Source Separation

MWF:

Multichannel Wiener Filter

LCMV:

Linearly Constrained Minimum Variance

DOA:

Direction of Arrival

RTF:

Relative Transfer Functions

SOS:

Second Order Statistics

MVDR:

Minimum Variance Distortionless Response

FIR:

Finite Impulse Response

AIR:

Acoustic Impulse Response

GSC:

Generalized Sidelobe Canceler

MMI:

Minimum Mutual Information

STFT:

Short-Time Fourier Transform

VAD:

Voice Activity Detection

SPP:

Speech Presence Probability

TRINICON:

TRIple-N Independent component analysis for CONvolutive mixtures

SE:

Signal Extraction

NRE:

Normalized RTF Estimation Error

SIR:

Signal-to-Interference Ratio

References

  1. W. Kellermann, H. Buchner, W. Herbordt, R. Aichner, Multichannel acoustic signal processing for human/machine interfaces—Fundamental problems and recent advances, in Proceedings of the International Conference on Acoustics (ICA), April 2004, pp. I–243–250

    Google Scholar 

  2. S. Doclo, W. Kellermann, S. Makino, S.E. Nordholm, Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones. IEEE Signal Process. Mag. 32(2), 18–30 (2015)

    Article  Google Scholar 

  3. S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated perspective on multimicrophone speech enhancement and source separation. IEEE/ACM Trans. Audio, Speech Lang. Process. (ASLP). 25(4), 692–730 (2017)

    Google Scholar 

  4. B.D.V. Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  Google Scholar 

  5. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, 2001)

    Google Scholar 

  6. P. Smaragdis, Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(1–3), 21–34 (1998)

    Article  MATH  Google Scholar 

  7. L. Parra, C. Spence, Convolutive blind separation of non-stationary sources. IEEE Trans. Audio Speech Lang. Process. (ASL) 8(3), 320–327 (2000)

    Google Scholar 

  8. H. Buchner, R. Aichner, W. Kellermann, Blind source separation for convolutive mixtures: a unified treatment, in Audio Signal Processing for Next-generation Multimedia Communication Systems, ed. by Y. Huang, J. Benesty (Kluwer Academic Publishers, 2004), pp. 255–293

    Google Scholar 

  9. S. Makino, T.-W. Lee, H. Sawada, Blind Speech Separation (Springer, 2007)

    Google Scholar 

  10. A. Ozerov, C. Fevotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio Speech Lang. Process. (ASL) 18(3), 550–563 (2010)

    Google Scholar 

  11. B. Widrow, P.E. Mantey, L.J. Griffiths, B.B. Goode, Adaptive antenna systems. Proc. IEEE 55(12), 2143–2159 (1967)

    Article  Google Scholar 

  12. A. Spriet, M. Moonen, J. Wouters, Spatially pre-processed speech distortion weighted multi-channel Wiener filtering for noise reduction. Signal Process. (SP) 84(12), 2367–2387 (2004)

    Article  Google Scholar 

  13. S. Doclo, A. Spriet, J. Wouters, M. Moonen, Frequency-domain criterion for the speech distortion weighted multichannel Wiener filter for robust noise reduction. Speech Commun. (SC) 49(78), 636–656 (2007)

    Article  Google Scholar 

  14. O.L. Frost, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  15. L. Griffiths, C. Jim, An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antennas Propag. (AP) 30(1), 27–34 (1982)

    Google Scholar 

  16. H. Buchner, R. Aichner, W. Kellermann, Blind source separation algorithms for convolutive mixtures exploiting nongaussianity, nonwhiteness, and nonstationarity, in Proceedings of the International Workshop Acoustic Echo Noise Control (IWAENC), September 2003, pp. 275–278

    Google Scholar 

  17. W. Herbordt, H. Buchner, W. Kellermann, An acoustic human-machine front-end for multimedia applications. EURASIP J. Adv. Signal Process. 2003(1), 1–11 (2003)

    Article  Google Scholar 

  18. W. Herbordt, Sound Capture for Human/Machine Interfaces—Practical Aspects of Microphone Array Signal Processing (Springer, Heidelberg, Germany, 2005)

    MATH  Google Scholar 

  19. P. Oak, W. Kellermann, A calibration method for robust generalized sidelobe cancelling beamformers, in Proceedings of the International Workshop Acoustic Echo Noise Control (IWAENC), September 2005, pp. 97–100

    Google Scholar 

  20. M. Souden, J. Chen, J. Benesty, S. Affes, An integrated solution for online multichannel noise tracking and reduction. IEEE Trans. Audio Speech Lang. Process. (ASL) 9(7), 2159–2169 (2011)

    Google Scholar 

  21. R.C. Hendriks, T. Gerkmann, Noise correlation matrix estimation for multi-microphone speech enhancement. IEEE Trans. Audio Speech Lang. Process. (ASL) 20(1), 223–233 (2012)

    Google Scholar 

  22. E.A.P. Habets, S. Gannot, Tutorial: Linear and parametric microphone array processing, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, https://www.audiolabs-erlangen.de/fau/professor/habets/activities/ICASSP-2013/

  23. S. Gannot, D. Burshtein, E. Weinstein, Signal enhancement using beamforming and nonstationarity with applications to speech. IEEE Trans. Signal Process. (SP) 49(8), 1614–1626 (2001)

    Article  Google Scholar 

  24. S. Gannot, I. Cohen, Speech enhancement based on the general transfer function gsc and postfiltering. IEEE Speech Audio Process. (SAP) 12(6), 561–571 (2004)

    Article  Google Scholar 

  25. S. Markovich-Golan, S. Gannot, I. Cohen, Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfering speech signals. IEEE Trans. Audio Speech Lang. Process. (ASL) 17(6), 1071–1086 (2009)

    Google Scholar 

  26. S.M. Golan, S. Gannot, I. Cohen, Subspace tracking of multiple sources and its application to speakers extraction, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), March 2010, pp. 201–204

    Google Scholar 

  27. L.C. Parra, C.V. Alvino, Geometric source separation: Merging convolutive source separation with geometric beamforming. IEEE Speech Audio Process. (SAP) 10(6), 352–362 (2002)

    Article  Google Scholar 

  28. G. Reuven, S. Gannot, I. Cohen, Dual-source transfer-function generalized sidelobe canceller. IEEE Trans. Audio Speech Lang. Process. (ASL) 16(4), 711–727 (2008)

    Google Scholar 

  29. S. Gannot, D. Burshtein, E. Weinstein, Analysis of the power spectral deviation of the general transfer function GSC. IEEE Trans. Signal Process. (SP) 52(4), 1115–1120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Zheng, K. Reindl, W. Kellermann, BSS for improved interference estimation for blind speech signal extraction with two microphones, in Proceedings of the International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Aruba, Dutch Antilles, December 2009, pp. 253–256

    Google Scholar 

  31. J. Benesty, J. Chen, Y. Huang, J. Dmochowski, On microphone-array beamforming from a MIMO acoustic signal processing perspective. IEEE Trans. Audio Speech Lang. Process. (ASL) 15(3), 1053–1065 (2007)

    Google Scholar 

  32. J. Chen, J. Benesty, Y. Huang, An acoustic MIMO framework for analyzing microphone-array beamforming, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, April 2007, pp. I–25–I–28

    Google Scholar 

  33. H. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing. Estimation, and Modulation Theory Detection (Wiley, 2004)

    Google Scholar 

  34. K. Reindl, Multichannel Acoustic Signal Extraction for Reverberant Environments (Verlag Dr. Hut, München, 2015)

    Google Scholar 

  35. W. Herbordt, W. Kellermann, Adaptive beamforming for audio signal acquisition, in Adaptive Signal Processing - Applications to Real-World Problems, ed. by Y.H.J. Benesty (Springer, Berlin, Germany, 2003), pp. 155–194

    Chapter  Google Scholar 

  36. G. Strang, Linear Algebra and Its Applications, 4th edn. (Thomson, Brooks/Cole, Belmont, CA, 2006)

    MATH  Google Scholar 

  37. K.M. Buckley, L.J. Griffiths, An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propag. (AP) 34(3), 311–319 (1986)

    Article  Google Scholar 

  38. K. Buckley, Broad-band beamforming and the generalized sidelobe canceller. IEEE Trans. Acoust. Speech Signal Process. (ASSP) 34(5), 1322–1323 (1986)

    Google Scholar 

  39. B.R. Breed, J. Strauss, A short proof of the equivalence of LCMV and GSC beamforming. IEEE Signal Process. Lett. (SPL) 9(6), 168–169 (2002)

    Article  Google Scholar 

  40. O. Hoshuyama, A. Sugiyama, A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 1996, p. 925928

    Google Scholar 

  41. O. Hoshuyama, A. Sugiyama, A. Hirano, A robust adaptive microphone array with improved spatial selectivity and its evaluation in a real environment, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), April 1997, p. 367370

    Google Scholar 

  42. O. Hoshuyama, A. Sugiyama, A. Hirano, A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Trans. Signal Process. (SP) 47(10), 2677–2684 (1999)

    Article  Google Scholar 

  43. W. Herbordt, W. Kellermann, Analysis of blocking matrices for generalized sidelobe cancellers for non-stationary broadband signals, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2002, pp. 4187–4187

    Google Scholar 

  44. W. Herbordt, H. Buchner, S. Nakamura, W. Kellermann, Application of a double-talk resilient DFT-domain adaptive filter for bin-wise stepsize controls to adaptive beamforming, in Proceedings of the International Workshop on Nonlinear Signal and Image Processing (NSIP), May 2005

    Google Scholar 

  45. W. Herbordt, H. Buchner, S. Nakamura, W. Kellermann, Outlier-robust DFT-domain adaptive filtering for bin-wise stepsize controls, and its application to a generalized sidelobe canceller, in Proceedings of the International Workshop Acoustic Echo Noise Control (IWAENC), September 2005, pp. 113–116

    Google Scholar 

  46. W. Herbordt, H. Buchner, S. Nakamura, W. Kellermann, Multichannel bin-wise robust frequency-domain adaptive filtering and its application to adaptive beamforming. IEEE Trans. Audio Speech Lang. Process. (ASL) 15(4), 1340–1351 (2007)

    Google Scholar 

  47. P.J. Huber, E.M. Ronchetti, Robust Statistics. Wiley Series in Probability and Statistics (Wiley, 2009)

    Google Scholar 

  48. K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough, M. Wölfel, Adaptive beamforming with a minimum mutual information criterion. IEEE Trans. Audio Speech Lang. Process. (ASL) 15(8), 2527–2541 (2007)

    Google Scholar 

  49. K. Kumatani, J. McDonough, B. Rauch, D. Klakow, P.N. Garner, W. Li, Beamforming with a maximum negentropy criterion. IEEE Trans. Audio Speech Lang. Process. (ASL) 17(5), 994–1008 (2009)

    Google Scholar 

  50. G. Reuven, S. Gannot, I. Cohen, Performance analysis of dual source transfer-function generalized sidelobe canceller. Speech Commun. (SC) 49(78), 602–622 (2007)

    Google Scholar 

  51. S. Markovich, S. Gannot, I. Cohen, A comparison between alternative beamforming strategies for interference cancelation in noisy and reverberant environment, in IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI), December 2008, pp. 203–207

    Google Scholar 

  52. S. Markovich-Golan, S. Gannot, I. Cohen, A sparse blocking matrix for multiple constraints GSC beamformer, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), March 2012, pp. 197–200

    Google Scholar 

  53. S. Markovich-Golan, S. Gannot, I. Cohen, Distributed multiple constraints generalized sidelobe canceler for fully connected wireless acoustic sensor networks. IEEE Trans. Audio Speech Lang. Process. (ASL) 21(2), 343–356 (2013)

    Google Scholar 

  54. R. Talmon, I. Cohen, S. Gannot, Relative transfer function identification using convolutive transfer function approximation. IEEE Trans. Audio Speech Lang. Process. (ASL) 17(4), 546–555 (2009)

    Google Scholar 

  55. R. Talmon, I. Cohen, S. Gannot, Convolutive transfer function generalized sidelobe canceler. IEEE Trans. Audio Speech Lang. Process. (ASL) 17(7), 1420–1434 (2009)

    Google Scholar 

  56. O. Shalvi, E. Weinstein, System identification using nonstationary signals. IEEE Trans. Signal Process. (SP) 44(8), 2055–2063 (1996)

    Article  Google Scholar 

  57. I. Cohen, Relative transfer function identification using speech signals. IEEE Speech Audio Process. (SAP) 12(5), 451–459 (2004)

    Article  Google Scholar 

  58. M. Schwab, P. Noll, T. Sikora, Noise robust relative transfer function estimation,” in European Signal Processing Conference (EUSIPCO), September 2006, pp. 1–5

    Google Scholar 

  59. R. Talmon, I. Cohen, S. Gannot, Identification of the relative transfer function between microphones in reverberant environments, in IEEE Conventional of Electrical and Electronics Engineers in Israel (IEEEI), December 2008, pp. 208–212

    Google Scholar 

  60. R. Talmon, I. Cohen, S. Gannot, Identification of the Relative Transfer Function between Sensors in the Short-Time Fourier Transform Domain (Springer, Berlin, Heidelberg, 2010), pp. 33–47

    Google Scholar 

  61. A. Krueger, E. Warsitz, R. Haeb-Umbach, Speech enhancement with a GSC-like structure employing eigenvector-based transfer function ratios estimation. IEEE Trans. Audio Speech Lang. Process. (ASL) 19(1), 206–219 (2011)

    Google Scholar 

  62. X. Li, L. Girin, R. Horaud, S. Gannot, Estimation of relative transfer function in the presence of stationary noise based on segmental power spectral density matrix subtraction, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 320–324

    Google Scholar 

  63. T. Gerkmann, C. Breithaupt, R. Martin, Improved a posteriori speech presence probability estimation based on a likelihood ratio with fixed priors. IEEE Trans. Audio Speech Lang. Process. (ASL) 16(5), 910–919 (2008)

    Google Scholar 

  64. T. Gerkmann, M. Krawczyk, R. Martin, Speech presence probability estimation based on temporal cepstrum smoothing, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2010, pp. 4254–4257

    Google Scholar 

  65. E. Weinstein, M. Feder, A.V. Oppenheim, Multi-channel signal separation by decorrelation. IEEE Speech Audio Process. (SAP) 1(4), 405–413 (1993)

    Article  Google Scholar 

  66. K. Reindl, S. Markovich-Golan, H. Barfuss, S. Gannot, W. Kellermann, Geometrically constrained TRINICON-based relative transfer function estimation in underdetermined scenarios, in Proceedings of the IEEE Workshop Applications Signal Processing Audio Acoustics (WASPAA), October 2013

    Google Scholar 

  67. K. Reindl, W. Kellermann, Linearly-constrained multichannel interference suppression algorithms derived from a minimum mutual information criterion, in Proceedings of the IEEE China Summit & International Conference on Communication and Signal Processing (ChinaSIP 2013), July 2013

    Google Scholar 

  68. K. Reindl, S. Meier, H. Barfuss, W. Kellermann, Minimum mutual information-based linearly constrained broadband signal extraction. IEEE/ACM Trans. Audio Speech Lang. Process. (ASLP) 22(6), 1096–1108 (2014)

    Google Scholar 

  69. C. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Aichner, Acoustic blind source separation in reverberant and noisy environments. Ph.D. dissertation, University Erlangen-Nürnberg, Germany, May 2007

    Google Scholar 

  71. H. Buchner, Broadband adaptive MIMO filtering: a unified treatment and applications to acoustic human-machine interfaces. Ph.D. dissertation, University Erlangen-Nürnberg, Germany, 2010

    Google Scholar 

  72. H. Buchner, A systematic approach to incorporate deterministic prior knowledge in broadband adaptive MIMO systems, in Proceedings of the (Systems and Computers (ASILOMAR), Nov, Asilomar Conference Signals), 2010, pp. 461–468

    Google Scholar 

  73. S.I. Amari, Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  74. H. Buchner, R. Aichner, W. Kellermann, A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics. IEEE Speech Audio Process. (SAP) 13(1), 120–134 (2005)

    Article  Google Scholar 

  75. S. Markovich-Golan, S. Gannot, W. Kellermann, Combined LCMV-TRINICON beamforming for separating multiple speech sources in noisy and reverberant environments. IEEE/ACM Trans. Audio Speech Lang. Process. (ASLP) 25(2), 320–332 (2017)

    Google Scholar 

  76. J. Chen, J. Benesty, Y. Huang, A minimum distortion noise reduction algorithm with multiple microphones. IEEE Trans. Audio Speech Lang. Process. (ASL) 16(3), 481–493 (2008)

    Google Scholar 

  77. E.A.P. Habets, J. Benesty, I. Cohen, S. Gannot, On a tradeoff between dereverberation and noise reduction using the MVDR beamformer, in Proceedings of the IEEE International Conference on Communication and Signal Processing (ICASSP), April 2009, p. 37413744

    Google Scholar 

  78. E.A.P. Habets, J. Benesty, I. Cohen, S. Gannot, J. Dmochowski, New insights into the MVDR beamformer in room acoustics. IEEE Trans. Audio Speech Lang. Process. (ASL) 18(1), 158170 (2010)

    Google Scholar 

  79. E.A.P. Habets, J. Benesty, S. Gannot, I. Cohen, The MVDR beamformer for speech enhancement, in Speech Processing in Modern Communication-Challenges and Perspectives, ed. by I. Cohen, J. Benesty, S. Gannot (Springer, Berlin, Germany, 2010), pp. 225–254

    Chapter  Google Scholar 

  80. M. Knaak, S. Araki, S. Makino, Geometrically constraint ICA for convolutive mixtures of sound, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), vol. 2, April 2003, pp. II–725–728

    Google Scholar 

  81. M. Knaak, S. Araki, S. Makino, Geometrically constraint ICA for robust separation of sound mixtures, in Proceedings of the International Symposium on Independent Component Analysis Blind Separation (ICA), April 2003, pp. 951–956

    Google Scholar 

  82. M. Knaak, S. Araki, S. Makino, Geometrically constrained independent component analysis. IEEE Trans. Audio Speech Lang. Process. (ASL) 15(2), 715–726 (2007)

    Google Scholar 

  83. Y. Zheng, K. Reindl, W. Kellermann, Analysis of dual-channel ICA-based blocking matrix for improved noise estimation. EURASIP J. Adv. Signal Process. 2014(4:26), 1–24 (2014)

    Google Scholar 

  84. H. Brehm, W. Stammler, Description and generation of spherically invariant speech-model signals. Signal Process. (SP) 12, 119–141 (1987)

    Article  Google Scholar 

  85. H. Buchner, W. Kellermann, A fundamental relation between blind and supervised adaptive filtering illustrated for blind source separation and acoustic echo cancellation, in Joint Workshop Hands-free Speech Communication, Microphone Arrays (HSCMA), May 2008, pp. 17–20

    Google Scholar 

  86. S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice-Hall, 2002)

    Google Scholar 

  87. R. Aichner, H. Buchner, F. Yan, W. Kellermann, A real-time blind source separation scheme and its application to reverberant and noisy acoustic environments. Signal Process. (SP) 86, 1260–1277 (2006)

    Article  MATH  Google Scholar 

  88. R. Aichner, H. Buchner, W. Kellermann, Exploiting narrowband efficiency for broadband convolutive blind source separation. EURASIP J. Adv. Signal Process. 2007, 1–9 (2006)

    Article  MATH  Google Scholar 

  89. H. Barfuss, W. Kellermann, An adaptive microphone array topology for target signal extraction with humanoid robots, in Proceedings of the International Workshop Acoustic Signal Enhancement (IWAENC), September 2014, pp. 16–20

    Google Scholar 

  90. K. Kumatani, J. McDonough, B. Raj, Microphone array processing for distant speech recognition: from close-talking microphones to far-field sensors. IEEE Signal Process. Mag. 29(6), 127–140 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Barfuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barfuss, H., Reindl, K., Kellermann, W. (2018). Informed Spatial Filtering Based on Constrained Independent Component Analysis. In: Makino, S. (eds) Audio Source Separation. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73031-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73031-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73030-1

  • Online ISBN: 978-3-319-73031-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics