Skip to main content

Achieving Laser Wakefield Accelerated Electron Beams of Low Enough Energy Spread for an X-FEL

  • Conference paper
  • First Online:
X-Ray Lasers 2016 (ICXRL 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 202))

Included in the following conference series:

  • 1114 Accesses

Abstract

We describe a method to obtain sufficiently low energy spread laser wakefield accelerated electron beams for injection into a conventional undulator and free electron lasing. By using two laser pulses: a moderate power laser to inject and accelerate electrons via its wakefield to moderate energies and a second more powerful laser pulse to generate another wakefield further accelerating them to 1 GeV, and properly matching the acceleration stages an energy spread of 0.2% is possible, leading to the realization of a compact X-ray free electron laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  2. Esarey, E., et al.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  3. Zhang, Z., et al.: Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching. Phys. Plasmas 23, 053106-1–053106-7 (2016)

    Google Scholar 

  4. Bulanov, S.V., et al.: On some theoretical problems of laser wake-field accelerators. J. Plasma Phys. 82, 905820308-1–905820308-55 (2016)

    Google Scholar 

  5. Tomassini, P., et al.: Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking. Phys. Rev. ST Accel. Beams 6, 121301-1–121301-7 (2003)

    Google Scholar 

  6. Bulanov, S., et al.: Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260 (1998)

    Google Scholar 

  7. Brantov, A.V., et al.: Controlled electron injection into the wake wave using plasma density inhomogeneity. Phys. Plasmas 15, 073111-1–073111-10 (2008)

    Google Scholar 

  8. Buck, A., et al.: Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006-1–185006-5 (2013)

    Google Scholar 

  9. Esirkepov, T.Zh.: Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comp. Phys. Comm. 135, 144–153 (2001)

    Google Scholar 

  10. Esirkepov, T.Zh., et al.: Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803-1–014803-4 (2006)

    Google Scholar 

  11. González-Pinto, S., et al.: Efficient iterations for Gauss methods on second-order problems. J. Comput. Appl. Math. 189, 80–97 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Netlib Repository. http://www.netlib.org/ode/ (2015). Accessed 25 May 2015

Download references

Acknowledgements

This research was funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Koga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koga, J.K., Bulanov, S.V., Esirkepov, T.Z., Kando, M. (2018). Achieving Laser Wakefield Accelerated Electron Beams of Low Enough Energy Spread for an X-FEL. In: Kawachi, T., Bulanov, S., Daido, H., Kato, Y. (eds) X-Ray Lasers 2016. ICXRL 2016. Springer Proceedings in Physics, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-73025-7_18

Download citation

Publish with us

Policies and ethics