Advertisement

Domain Adaptation for Resume Classification Using Convolutional Neural Networks

  • Luiza SayfullinaEmail author
  • Eric Malmi
  • Yiping Liao
  • Alexander Jung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)

Abstract

We propose a novel method for classifying resume data of job applicants into 27 different job categories using convolutional neural networks. Since resume data is costly and hard to obtain due to its sensitive nature, we use domain adaptation. In particular, we train a classifier on a large number of freely available job description snippets and then use it to classify resume data. We empirically verify a reasonable classification performance of our approach despite having only a small amount of labeled resume data available.

Keywords

Resume classification Convolutional neural networks Job-market analysis 

References

  1. 1.
    Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)
  2. 2.
    Al-Otaibi, S.T., Ykhlef, M.: A survey of job recommender systems. Int. J. Phys. Sci. 7(29), 5127–5142 (2012)CrossRefGoogle Scholar
  3. 3.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 19, p. 137 (2007)Google Scholar
  5. 5.
    Daume III, H., Marcu, D.: Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 26, 101–126 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation, pp. 1180–1189 (2015)Google Scholar
  7. 7.
    Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: International Conference on Machine Learning, pp. 513–520 (2011)Google Scholar
  9. 9.
    Hong, W., Zheng, S., Wang, H., Shi, J.: A job recommender system based on user clustering. J. Comput. 8(8), 1960–1967 (2013)CrossRefGoogle Scholar
  10. 10.
    Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
  11. 11.
    Kim, Y.: Convolutional neural networks for sentence classification, pp. 1746–1751 (2014)Google Scholar
  12. 12.
    Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 2741–2749 (2016)Google Scholar
  13. 13.
    Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)Google Scholar
  14. 14.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar
  15. 15.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  16. 16.
    Tutubalina, E.: Dependency-based problem phrase extraction from user reviews of products. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS (LNAI), vol. 9302, pp. 199–206. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24033-6_23 CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Luiza Sayfullina
    • 1
    Email author
  • Eric Malmi
    • 1
  • Yiping Liao
    • 1
  • Alexander Jung
    • 1
  1. 1.Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations