An Approximation Scheme for a Weighted Two-Cluster Partition Problem

  • Alexander Kel’manovEmail author
  • Anna MotkovaEmail author
  • Vladimir ShenmaierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)


We consider the problem of partitioning a set of Euclidean points into two clusters to minimize the weighted sum of the squared intracluster distances from the elements of the clusters to their centers. The center of one of the clusters is unknown and determined as the average value over all points in the cluster, while the center of the other cluster is the origin. The weight factors for both intracluster sums are given as input. We present an approximation algorithm for the problem, which is based on an adaptive-grid-approach. The algorithm implements a fully polynomial-time approximation scheme (FPTAS) in the case of the fixed space dimension. In the case when the dimension of space is not fixed but is bounded by a slowly growing function of the number of input points, the algorithm realizes a polynomial-time approximation scheme (PTAS).


Weighted 2-clustering NP-hardness Euclidean space FPTAS PTAS 



This work was supported by the Russian Science Foundation (project 16-11-10041).


  1. 1.
    Kel’manov, A.V., Romanchenko, S.M.: An FPTAS for a vector subset search problem. J. Appl. Ind. Math. 8(3), 329–336 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kel’manov, A.V., Khandeev, V.I.: Fully polynomial-time approximation scheme for a special case of a quadratic euclidean 2-clustering problem. Comput. Math. Math. Phys. 56(2), 334–341 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kel’manov, A., Motkova, A.: A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 182–192. Springer, Cham (2016). CrossRefGoogle Scholar
  4. 4.
    Kel’manov, A.V., Romanchenko, S.M.: An approximation algorithm for solving a problem of search for a vector subset. J. Appl. Ind. Math. 6(1), 90–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kel’manov, A.V., Romanchenko, S.M.: Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems. Autom. Remote Control 73(2), 349–354 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shenmaier, V.V.: An approximation scheme for a problem of search for a vector subset. J. Appl. Ind. Math. 6(3), 381–386 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kel’manov, A.V., Khandeev, V.I.: A randomized algorithm for two-cluster partition of a set of vectors. Comput. Math. Math. Phys. 55(2), 330–339 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kel’manov, A.V., Khandeev, V.I.: An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors. J. Appl. Ind. Math. 9(4), 497–502 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dolgushev, A.V., Kel’manov, A.V., Shenmaier, V.V.: Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Proc. Steklov Inst. Math. 295(1), 47–56 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kel’manov, A.V., Motkova, A.V.: Exact pseudopolynomial algorithms for a balanced 2-clustering problem. J. Appl. Ind. Math. 10(3), 349–355 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kel’manov, A.V., Pyatkin, A.V.: NP-completeness of some problems of choosing a vector subset. J. Appl. Ind. Math. 5(3), 352–357 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding \(k\) points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kel’manov, A.V., Pyatkin, A.V.: Complexity of certain problems of searching for subsets of vectors and cluster analysis. Comput. Math. Math. Phys. 49(11), 1966–1971 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dolgushev, A.V., Kel’manov, A.V.: An approximation algorithm for solving a problem of cluster analysis. J. Appl. Ind. Math. 5(4), 551–558 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gimadi, E.K., Pyatkin, A.V., Rykov, I.A.: On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension. J. Appl. Ind. Math. 1(4), 48–53 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kel’manov, A.V., Pyatkin, A.V.: NP-hardness of some quadratic euclidean 2-clustering problems. Dokl. Math. 92(2), 634–637 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kel’manov, A.V., Pyatkin, A.V.: On the complexity of some quadratic euclidean 2-clustering problems. Comput. Math. Math. Phys. 56(3), 491–497 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015). CrossRefzbMATHGoogle Scholar
  20. 20.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009). CrossRefzbMATHGoogle Scholar
  22. 22.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer Science+Business Media, LLC, New York (2013). CrossRefzbMATHGoogle Scholar
  23. 23.
    Jain, A.K.: Data clustering: 50 years beyond \(k\)-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  24. 24.
    Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, New Jersey (1976)zbMATHGoogle Scholar
  25. 25.
    Ball, K.: An Elementary Introduction to Modern Convex Geometry. Flavors Geom. 31, 1–58 (1997). MSRI PublicationsMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations