Floor-Ladder Framework for Human Face Beautification

  • Yulia NovskayaEmail author
  • Sun Ruoqi
  • Hengliang Zhu
  • Lizhuang Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)


In this paper, we propose a Floor-Ladder Framework (FLN) based on age evolution rules to generate beautified human faces. Beside the shape of faces, younger faces achieve more attractiveness. Thus we process the beautiful face by applying the reversed aging rules. Inspired by the layered optimization methods, the FLN adopts three floors and each floor contains two ladders: the Single Layer Older Neural Network (SLONN) and the extended Skull Model. The Peak Shift algorithm is designed to train the SLONN aiming to capture the reversed aging rules of the face skin. Due to the growth rules of the face shape, we extended the Skull Model by adding Marquardt Mask. Given the input portrait, our algorithm effectively produces a beautified human face without losing personal features.


Face beautification Floor-Ladder Framework The Peak Shift Algorithm The Single Layer Older Neural Network The extended Skull Model 



This work is supported by the National Natural Science Foundation of China (No.61472245), and the Science and Technology Commission of Shanghai Municipality Program (No.16511101300).


  1. 1.
    Shu, X., Tang, J., Lai, H., et al.: Personalized age progression with aging dictionary. In: IEEE International Conference on Computer Vision (ICCV), pp. 3970–3978 (2015)Google Scholar
  2. 2.
    Kemelmachershlizerman, I., Suwajanakorn, S., Seitz, S.M.: Illumination-aware age progression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3334–3341 (2014)Google Scholar
  3. 3.
  4. 4.
    Alley, T.R.: Social and Applied Aspects of Perceiving Faces. Lawrence Erlbaum Associates, Hillsdale (1988)Google Scholar
  5. 5.
    Yang, J., Price, B., Cohen, S., et al.: Object contour detection with a fully convolutional encoder-decoder network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  6. 6.
    Chi, N.D., Luu, K., Quach, K.G., et al.: Beyond principal components: deep Boltzmann machines for face modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4786–4794 (2015)Google Scholar
  7. 7.
    Chen, Y., Ding, S.H., Gan-Le, H.U., et al.: Facial beautification method based on age evolution. Comput. Aided Drafting Des. Manufact. 4, 7–13 (2013)Google Scholar
  8. 8.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  9. 9.
    Todd, J.T., Mark, L.S., Shaw, R.E., et al.: The perception of human growth. Sci. Am. 242(2), 132–144 (1980)CrossRefGoogle Scholar
  10. 10.
    Lanitis, A., Taylors, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 442–455 (2002)CrossRefGoogle Scholar
  11. 11.
    Sun, Y., Chen, Y., Wan, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems (NIPS), pp. 1988–1996 (2014)Google Scholar
  12. 12.
    Yu, L., Michael, S.L.: Learning relaxed deep supervision for better edge detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  13. 13.
    Chi, N.D., Khoa, L., Kha, G.Q., et al.: Longitudinal face modeling via temporal deep restricted Boltzmann machines. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  14. 14.
    Timo, B., Stefanie, W.: A groupwise multilinear correspondence optimization for 3D faces. In: The IEEE International Conference on Computer Vision (ICCV), pp. 3604–3612 (2015)Google Scholar
  15. 15.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  16. 16.
    Zhang, Y., et al.: Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 249–258 (2015)Google Scholar
  17. 17.
    Zhang, D., Zhao, Q., Chen, F.: Quantitative analysis of human facial beauty using geometric features. Pattern Recogn. 44(4), 940–950 (2011)CrossRefGoogle Scholar
  18. 18.
    Leyvand, T., Cohen, D., Dror, G., et al.: Data-driven enhancement of facial attractiveness. ACM Trans. Graph. (TOG) 27(3), 15–19 (2008)CrossRefGoogle Scholar
  19. 19.
    Li, J., Xiong, C., Liu, L., et al.: Deep face beautification. In: ACM International Conference on Multimedia, pp. 793–794 (2015)Google Scholar
  20. 20.
    Guo, D., Sim, T.: Digital face makeup by example. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  21. 21.
    Liu, L., Xu, H., Xing, S., et al.: Wow! You are so beautiful today! In: Proceedings of 21st ACM International Conference on Multimedia (MM), vol. 11, no. 1s, pp. 3–12 (2014)Google Scholar
  22. 22.
    Lee, J.Y., Kang, H.B.A.: New digital face makeup method. In: IEEE International Conference on Consumer Electronics (2016)Google Scholar
  23. 23.
    Wang, W., Cui, Z., Yan, Y., et al.: Recurrent face aging. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2016)Google Scholar
  24. 24.
    Sethuram, A., Ricanel, K., Patterson, E.: A hierarchical approach to facial aging. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 100–107 (2010)Google Scholar
  25. 25.
    Liang, L., Jin, L., Li, X.: Facial skin beautification using adaptive region-aware masks. IEEE Trans. Cybern. 44(12), 2600–2612 (2014)CrossRefGoogle Scholar
  26. 26.
    Nouveaeu-Richard, S., de Lacharrie’re, O.: Skin aging: an exploratory research above the Chinese and European. In: China Cosmetic Academic Symposium (2006)Google Scholar
  27. 27.
    Liu, S., Ou, X., Qian, R., et al.: Makeup like a superstar: Deep Localized Makeup Transfer Network (2016)Google Scholar
  28. 28.
    Meitulnc, Meitupic (2014).
  29. 29.
    Lightroom Imagenomic, “Portraiture” (2015).
  30. 30.
    Face variations by age. In: Network: Marquardt Beauty Analysis.
  31. 31.
    Cao, X., Wei, Y., Wen, F., et al.: Face alignment by explicit shape regression. In: CVPR (2016)Google Scholar
  32. 32.
  33. 33.
    Zhu, S., Liu, S., Loy, C.C., Tang, X., et al.: Cascaded bi-network for face hallucination. In: ECCV (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yulia Novskaya
    • 1
    Email author
  • Sun Ruoqi
    • 1
  • Hengliang Zhu
    • 1
  • Lizhuang Ma
    • 1
  1. 1.School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations