Original Loop-Closure Detection Algorithm for Monocular vSLAM

  • Andrey BokovoyEmail author
  • Konstantin Yakovlev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)


Vision-based simultaneous localization and mapping (vSLAM) is a well-established problem in mobile robotics and monocular vSLAM is one of the most challenging variations of that problem nowadays. In this work we study one of the core post-processing optimization mechanisms in vSLAM, e.g. loop-closure detection. We analyze the existing methods and propose original algorithm for loop-closure detection, which is suitable for dense, semi-dense and feature-based vSLAM methods. We evaluate the algorithm experimentally and show that it contribute to more accurate mapping while speeding up the monocular vSLAM pipeline to the extent the latter can be used in real-time for controlling small multi-rotor vehicle (drone).


Loop-closure Vision-based localization and mapping Unmanned aerial vehicle SLAM vSLAM 



This research was supported by Russian Foundation for Basic Research. Grant 15-07-07483.


  1. 1.
    Fu, C., Olivares-Mendez, M.A., Suarez-Fernandez, R., Campoy, P.: Monocular visual-inertial slam-based collision avoidance strategy for fail-safe UAV using fuzzy logic controllers. J. Intell. Robot. Syst. 73(1–4), 513–533 (2014)CrossRefGoogle Scholar
  2. 2.
    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-slam-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)CrossRefGoogle Scholar
  3. 3.
    Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531. IEEE (2014)Google Scholar
  4. 4.
    Strasdat, H., Montiel, J.M., Davison, A.J.: Visual slam: why filter? Image Vis. Comput. 30(2), 65–77 (2012)CrossRefGoogle Scholar
  5. 5.
    Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. In: arXiv:1607.02565, July 2016
  6. 6.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). Google Scholar
  7. 7.
    Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  8. 8.
    Mur-Artal, R., Tardós, J.D.: Visual-inertial monocular slam with map reuse. IEEE Robot. Autom. Lett. 2(2), 796–803 (2017)CrossRefGoogle Scholar
  9. 9.
    Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: Fast and incremental method for loop-closure detection using bags of visual words. IEEE Trans. Robot. 24(5), 1027–1037 (2008)CrossRefGoogle Scholar
  10. 10.
    Strasdat, H., Davison, A.J., Montiel, J.M., Konolige, K.: Double window optimisation for constant time visual slam. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2352–2359. IEEE (2011)Google Scholar
  11. 11.
    Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011)CrossRefGoogle Scholar
  12. 12.
    Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. The Int. J. Robot. Res. 29(8), 941–957 (2010)CrossRefGoogle Scholar
  13. 13.
    Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2042–2048. IEEE (2007)Google Scholar
  14. 14.
    Mur-Artal, R., Tardós, J.D.: Probabilistic semi-dense mapping from highly accurate feature-based monocular slam. In: Robotics: Science and Systems (2015)Google Scholar
  15. 15.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: Experimental Robotics, pp. 477-491. Springer, Heidelberg (2014).
  16. 16.
    Vokhmintsev, A., Timchenko, M., Yakovlev, K.: Simultaneous localization and mapping in unknown environment using dynamic matching of images and registration of point clouds. In: International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1–6. IEEE (2016)Google Scholar
  17. 17.
    Buyval, A., Gavrilenkov, M.: Vision-based pose estimation for indoor navigation of unmanned micro aerial vehicle based on the 3D model of environment. In: 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), pp. 1–4. IEEE (2015)Google Scholar
  18. 18.
    Afanasyev, I., Sagitov, A., Magid, E.: ROS-based SLAM for a gazebo-simulated mobile robot in image-based 3D model of indoor environment. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 273–283. Springer, Cham (2015). CrossRefGoogle Scholar
  19. 19.
    Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular slam. In: BMVC, vol. 13, p. 136 (2008)Google Scholar
  20. 20.
    Clemente, L.A., Davison, A.J., Reid, I.D., Neira, J., Tardós, J.D.: Mapping large loops with a single hand-held cameraGoogle Scholar
  21. 21.
    Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., Tardós, J.: An image-to-map loop closing method for monocular slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2008, pp. 2053–2059. IEEE (2008)Google Scholar
  22. 22.
    Cummins, M., Newman, P.: Fab-map: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27(6), 647–665 (2008)CrossRefGoogle Scholar
  23. 23.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  24. 24.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  25. 25.
    Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)Google Scholar
  26. 26.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop On Open Source Software, vol. 3, p. 5, Kobe (2009)Google Scholar
  27. 27.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar
  28. 28.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition CVPR (2012)Google Scholar
  29. 29.
    Blanco-Claraco, J.L., Moreno-Dueñas, F.Á., González-Jiménez, J.: The málaga urban dataset: high-rate stereo and lidar in a realistic urban scenario. Int. J. Robot. Res. 33(2), 207–214 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  2. 2.Higher School of EconomicsMoscowRussia
  3. 3.Institute for Systems Analysis of Federal Research Centre “Computer Science and Control” of Russian Academy of SciencesMoscowRussia

Personalised recommendations