Advertisement

An Approach to Establishing the Correspondence of Spatial Objects on Heterogeneous Maps Based on Methods of Computational Topology

  • Sergey Eremeev
  • Kirill KuptsovEmail author
  • Semyon Romanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)

Abstract

The topical problem of automatic establishing the correspondence of spatial objects on different maps of the same terrain without a priori information about key points is considered in the article. The basis of the algorithm is the methods of persistent homology which allow us to identify objects with topological deformations, but with the preservation of the structure of the object. These properties are manifested when displaying objects on maps of different scales or for different periods of time. The results of studies on the implementation of the algorithm for comparing maps from natural objects and for data analysis in municipal geographic information systems are shown.

Keywords

Barcode Computational topology Maps of different scales Spatial objects Topological relationships 

Notes

Acknowledgment

The reported study was funded by RFBR and Vladimir region according to the research project №17-47-330387.

References

  1. 1.
    Eremeev, S.V., Andrianov, D.E., Komkov, V.A.: Comparison of urban areas based on database of topological relationships in geoinformational systems. Pattern Recogn. Image Anal. 25(2), 314–320 (2015)CrossRefGoogle Scholar
  2. 2.
    Eremeev, S.V., Kuptsov, K.V., Andrianov, D.E.: Checking the topological consistency on maps of different scales. In: Supplementary Proceedings of the Fifth International Conference on Analysis of Images, Social Networks and Texts (AIST 2016), pp. 124–133 (2016)Google Scholar
  3. 3.
    De Almeida, J.P., Morley, J.G., Dowman, I.J.: A graph-based algorithm to define urban topology from unstructured geospatial data. Int. J. Geogr. Inf. Sci. 27, 1514–1529 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhao, L., Peng, Q., Huang, B.: Shape matching algorithm based on shape contexts. IET Comput. Vis. 9(5), 681–690 (2015)CrossRefGoogle Scholar
  5. 5.
    Lomov, N.A., Mestetskiy, L.M.: Area of the disk cover as an image shape descriptor. Comput. Opt. 40(4), 516–525 (2016)CrossRefGoogle Scholar
  6. 6.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  7. 7.
    Su, S., Ge, H., and Yuan, Y-H.: Multi-locality correlation feature learning for image recognition. In: IEEE Symposium on Computers and Communication (ISCC), pp. 874–879 (2016)Google Scholar
  8. 8.
    Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. In: Proceedings of the 2004 Eurographics. ACM SIGGRAPH Symposium on Geometry Processing, pp. 124–135 (2004)Google Scholar
  9. 9.
    Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: Proceedings of CVPRW, pp. 45–52 (2010)Google Scholar
  10. 10.
    Su, Y., Liu, Y., Cuan, B., Zheng, N.: Contour guided hierarchical model for shape matching. In: IEEE International Conference on Computer Vision (ICCV), Santiago, pp. 1609–1617 (2015)Google Scholar
  11. 11.
    Ahmed, M., Fasy, B., Wenk, C.: Local persistent homology based distance between maps. In: SIGSPATIAL. ACM (2014)Google Scholar
  12. 12.
    Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.: A barcode shape descriptor for curve point cloud data. Comput. Graph. 28, 881–894 (2004)CrossRefGoogle Scholar
  13. 13.
    Edelsbrunner, H.: Computational Topology: An Introduction. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Carlsson, E., Carlsson, G., de Silva, V., Fortune, S.: An algebraic topological method for feature identification. Int. J. Comput. Geom. Appl. 16(4), 291–314 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numerica 23, 289–368 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1953–1959. AAAI Press (2013)Google Scholar
  18. 18.
    Edelsbrunner, H., Parsa, S.: On the computational complexity of Betti numbers: reductions from matrix rank. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithm, pp. 152–160 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergey Eremeev
    • 1
  • Kirill Kuptsov
    • 1
    Email author
  • Semyon Romanov
    • 1
  1. 1.Vladimir State UniversityVladimirRussia

Personalised recommendations