Advertisement

Men Are from Mars, Women Are from Venus: Evaluation and Modelling of Verbal Associations

  • Ekaterina VylomovaEmail author
  • Andrei Shcherbakov
  • Yuriy Philippovich
  • Galina Cherkasova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10716)

Abstract

We present a quantitative analysis of human word association pairs and study the types of relations presented in the associations. We put our main focus on the correlation between response types and respondent characteristics such as occupation and gender by contrasting syntagmatic and paradigmatic associations. Finally, we propose a personalised distributed word association model and show the importance of incorporating demographic factors into the models commonly used in natural language processing.

Keywords

Associative experiments Sociolinguistics Language models Word associations 

Notes

Acknowledgments

We would like to thank all reviewers for their valuable comments and suggestions for future research directions. The first author was supported by the Melbourne International Research Scholarship (MIRS).

References

  1. 1.
    Cramer, P.: Word Association. Academic Press, New York (1968)Google Scholar
  2. 2.
    De Deyne, S., Storms, G.: Word associations: norms for 1,424 dutch words in a continuous task. Behav. Res. Methods 40(1), 198–205 (2008)CrossRefGoogle Scholar
  3. 3.
    de Groot, A.M.B.: Woordassociatienormen met reactietijden. Nederlands tijddschrift voor de psychologie en haar grensgebieden 43(6), 280–296 (1988)Google Scholar
  4. 4.
    Deese, J.: The Structure of Associations in Language and Thought. Johns Hopkins University Press, Baltimore (1966)Google Scholar
  5. 5.
    Eisenstein, J.: What to do about bad language on the internet. In: HLT-NAACL, pp. 359–369 (2013)Google Scholar
  6. 6.
    Han, B., Baldwin, T.: Lexical normalisation of short text messages: makn sens a# twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 368–378. Association for Computational Linguistics (2011)Google Scholar
  7. 7.
    Hovy, D., Søgaard, A.: Tagging performance correlates with author age. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, pp. 483–488 (2015)Google Scholar
  8. 8.
    Joyce, T.: Constructing a large-scale database of Japanese word associations. Glottometrics 10, 82–98 (2005). Corpus Studies on Japanese KanjiGoogle Scholar
  9. 9.
    Jung, J., Na, L., Akama, H.: Network analysis of Korean word associations. In: Proceedings of the NAACL HLT 2010 First Workshop on Computational Neurolinguistics, pp. 27–35. Association for Computational Linguistics (2010)Google Scholar
  10. 10.
    Karaulov, Y., Cherkasova, G., Ufimtseva, N., Sorokin, Y., Tarasov, E.: Russian associative thesaurus, Moscow (1998)Google Scholar
  11. 11.
    Kiss, G.R., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English and its computer analysis. In: The Computer and Literary Studies, pp. 153–165 (1973)Google Scholar
  12. 12.
    Koehn, P.: Europarl: a parallel corpus for statistical machine translation. In: MT Summit, vol. 5, pp. 79–86. Citeseer (2005)Google Scholar
  13. 13.
    Leontiev, A.: Norms of Russian word associations, Moscow (1977)Google Scholar
  14. 14.
    Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)Google Scholar
  15. 15.
    Loukachevitch, N., Lashevich, G., Gerasimova, A., Ivanov, V., Dobrov, B.: Creating Russian wordnet by conversion. In: International Conference on Computational Linguistics and Intellectual Technologies Dialog 2016, pp. 405–415 (2016)Google Scholar
  16. 16.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the Workshop at the International Conference on Learning Representations (2013)Google Scholar
  17. 17.
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The university of south orida free association, rhyme, and word fragment norms. Behav. Res. Methods Instr. Comput. 36(3), 402–407 (2004)CrossRefGoogle Scholar
  18. 18.
    Novák, Z.: Volne slovni parove asociace v cestine. Academia (1988)Google Scholar
  19. 19.
    Okamoto, J., Ishizaki, S.: Associative concept dictionary construction and its comparison with electronic concept dictionaries, pp. 214–220 (2001)Google Scholar
  20. 20.
    Rubinsten, O., Anaki, D., Henik, A., Drori, S., Faran, Y.: Free association norms in the Hebrew language. Word Norms in Hebrew, pp. 17–34 (2005)Google Scholar
  21. 21.
    Segalovich, I.: A fast morphological algorithm with unknown word guessing induced by a dictionary for a web search engine. In: MLMTA, pp. 273–280. Citeseer (2003)Google Scholar
  22. 22.
    Shaps, L.P., Johansson, B., Nilsson, L.: Swedish association norms (1976)Google Scholar
  23. 23.
    Sharoff, S.: The frequency dictionary for Russian (2001). Accessed 4 Dec 2007Google Scholar
  24. 24.
    Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cogn. Sci. 29(1), 41–78 (2005)CrossRefGoogle Scholar
  25. 25.
    Stoop, W., van den Bosch, A.P.J.: Using idiolects and sociolects to improve word prediction. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 318–327. Association for Computational Linguistics (2014)Google Scholar
  26. 26.
    Ufimmtseva, N., Cherkasova, G., Karaulov, Y., Evgenii, T.: Slavonic associative thesaurus: Russian, Belarussian, Bulgarian, Ukrainian. In: Problems of Applied Linguistics. 1 edn. (2004)Google Scholar
  27. 27.
    Volkova, S., Wilson, T., Yarowsky, D.: Exploring demographic language variations to improve multilingual sentiment analysis in social media. In: Proceedings of Empirical Methods on Natural Language Processing (EMNLP 2013), pp. 1815–1827 (2013)Google Scholar
  28. 28.
    Vylomova, E., Rimmel, L., Cohn, T., Baldwin, T.: Take and took, gaggle and goose, book and read: evaluating the utility of vector differences for lexical relation learning. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016), pp. 1671–1682 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ekaterina Vylomova
    • 1
    Email author
  • Andrei Shcherbakov
    • 1
  • Yuriy Philippovich
    • 2
  • Galina Cherkasova
    • 3
  1. 1.The University of MelbourneMelbourneAustralia
  2. 2.Moscow PolytechMoscowRussia
  3. 3.Institute of the Science of LanguageMoscowRussia

Personalised recommendations