Mapping of Tourism Destinations to Travel Behavioural Patterns

  • Mete SertkanEmail author
  • Julia Neidhardt
  • Hannes Werthner
Conference paper


Tourism is an information intensive domain, where recommender systems have become an essential tool to guide customers to the right products. However, they are facing major challenges, since tourism products are considered as complex and emotional. It has been shown that the seven-factor model is a legitimate way to counter some of these challenges. However, in order to recommend an item, it has also to be described in terms of this model. This work’s aim is to find a scalable way to map tourism destinations, defined by their attributes, to the seven-factor model. Through statistical analysis and learning methods it is shown that there is a significant relationship between particular destination features and the seven-factors and that destinations can be grouped in a meaningful way using their attributes.


User modelling Tourism recommender systems Tourism destinations Statistical analysis Cluster analysis Seven-factor model 


  1. Beirman, D.: Defining tourism destination in crisis. In: Restoring Tourism Destinations in Crisis: A Strategic Marketing Approach, pp. 3–17. CAB International (2003)Google Scholar
  2. Borràs, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: a survey. Expert Syst. Appl. 41(16), 7370–7389 (2014)CrossRefGoogle Scholar
  3. Braunhofer, M., Elahi, M., Ricci, F.: Usability assessment of a context-aware and personality-based mobile recommender system. In: International Conference on Electronic Commerce and Web Technologies, pp. 77–88. Springer, Cham (2014, September)Google Scholar
  4. Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–408. Springer, Berlin/Heidelberg (2007)Google Scholar
  5. Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Recommender Systems Handbook, pp. 367–386. Springer, USA (2011)Google Scholar
  6. Delić, A., Neidhardt, J., Werthner, H.: Are sun lovers nervous? E-Rev. Tourism Res. (eRTR), ENTER 2016 Special issue (2016)Google Scholar
  7. Fesenmaier, D.R., Wöber, K.W., Werthner, H. (eds.): Destination recommendation systems: behavioral foundations and applications. CAB International (2006)Google Scholar
  8. Garcia, I., Sebastia, L., Onaindia, E.: On the design of individual and group recommender systems for tourism. Expert Syst. Appl. 38(6), 7683–7692 (2011)CrossRefGoogle Scholar
  9. Gibson, H., Yiannakis, A.: Tourist roles: needs and the lifecourse. Ann. Tourism Res. 29(2), 358–383 (2002)CrossRefGoogle Scholar
  10. Goldberg, L.R.: An alternative “description of personality”: the big-five factor structure. J. Pers. Soc. Psychol. 59(6), 1216 (1990)CrossRefGoogle Scholar
  11. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 857–871 (1971)Google Scholar
  12. Gretzel, U.: Intelligent systems in tourism: a social science perspective. Ann. Tourism Res. 38(3), 757–779 (2011)CrossRefGoogle Scholar
  13. Gretzel, U., Mitsche, N., Hwang, Y., Fesenmaier, D.R.: Travel personality testing for destination recommendation systems. In: Destination Recommendation Systems: Behavioral Foundations and Applications, vol. 42(4), pp. 121–136. CAB International (2006)Google Scholar
  14. Hwang, Y., Gretzel, U., Xiang, Z., Fesenmaier, D.R.: Travel De. In: Destination Recommendation Systems: Behavioral Foundations and Applications, vol. 42(4), pp. 357–371. CAB International (2006)Google Scholar
  15. Ipsos MediaCT: The 2014 traveler’s road to decision. Retrieved 8, 2017 from (2014)
  16. James, G., Witten, D., Hastie, T., Tibshirani, R.: Statistical learning. In: An Introduction to Statistical Learning, vol. 112, pp. 15–57. Springer, New York (2013a)Google Scholar
  17. James, G., Witten, D., Hastie, T., Tibshirani, R.: Linear regression. In: An Introduction to Statistical Learning, vol. 112, pp. 59–126. Springer, New York (2013b)Google Scholar
  18. James, G., Witten, D., Hastie, T., Tibshirani, R.: Linear model selection and regularization. In: An Introduction to Statistical Learning, vol. 112, pp. 203–264. Springer, New York (2013c)Google Scholar
  19. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids (program PAM). In: Finding Groups in Data: An Introduction to Clustering Analysis, pp. 68–125. Wiley, Hoboken, NJ (1990)Google Scholar
  20. Neidhardt, J., Schuster, R., Seyfang, L., Werthner, H.: Eliciting the users’ unknown preferences. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 309–312 (2014)Google Scholar
  21. Neidhardt, J., Seyfang, L., Schuster, R., Werthner, H.: A picture-based approach to recommender systems. Inf. Technol. Tourism 15(1), 49–69 (2015)CrossRefGoogle Scholar
  22. Neidhardt, J., Werthner, H.: Travellers and their joint characteristics within the seven-factor model. In: Information and Communication Technologies in Tourism 2017, pp. 503–515. Springer (2017)Google Scholar
  23. Pang-Ning, T., Steinbach, M., Kumar, V.: Cluster analysis: basic concepts and algorithms. In: Introduction to Data Mining, pp. 487–568. Pearson Addison-Wesley (2006)Google Scholar
  24. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Recommender Systems Handbook, pp. 1–34. Springer, USA (2015)Google Scholar
  25. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  26. Werthner, H., Alzua-Sorzabal, A., Cantoni, L., Dickinger, A., Gretzel, U., Jannach, D., Neidhardt, J., Pröll, B., Ricci, F., Scaglione, M., Stangl, B., Stock, O., Zanker, M.: Future research issues in it and tourism. Inf. Technol. Tourism 15(1), 1–15 (2015)CrossRefGoogle Scholar
  27. Werthner, H., Klein, S.: Information technology and tourism—a challenging relationship. Springer-Verlag, Wien, New York (1999)CrossRefGoogle Scholar
  28. Werthner, H., Ricci, F.: E-commerce and tourism. Commun. ACM 47(12), 101–105 (2004)CrossRefGoogle Scholar
  29. Woszczynski, A., Roth, P., Segars, A.: Exploring the theoretical foundations of playfulness in computer interactions. Comput. Hum. Behav. 18(4), 369–388 (2002)CrossRefGoogle Scholar
  30. Zins, A.H.: Exploring travel information search behavior beyond common frontiers. Inf. Technol. Tourism 9(3–1), 149–164 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mete Sertkan
    • 1
    Email author
  • Julia Neidhardt
    • 1
  • Hannes Werthner
    • 1
  1. 1.E-Commerce GroupTU WienViennaAustria

Personalised recommendations