Skip to main content

Automated Assignment of Hotel Descriptions to Travel Behavioural Patterns

Abstract

The amount of people using online platforms to book a travel accommodation has grown tremendously. Hence, tour operators implement recommender systems to offer most suitable hotels to their customers. In this paper, a method of using hotel descriptions for recommendation is introduced. Different natural language processing methods were applied to pre-process a corpus of hotel descriptions. Further, three machine learning approaches for the allocation of hotel descriptions to travel behavioural patterns were implemented: clustering, classification and a dictionary-based approach. The main results show that clustering cannot be used in this context since the algorithm mostly relies on the operator-dependent structure of the descriptions. Supervised classification achieves the highest precision for six travel patterns, whereas the dictionary approach works best for one pattern. In general, the results for the different travel patterns vary due to the unequally distributed data sets as well as various characteristics of the patterns.

Keywords

  • User modelling
  • Personality-based recommender systems
  • Hotel descriptions
  • Text mining
  • Machine learning
  • Seven-factor-model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72923-7_31
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72923-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Details will be provided upon request.

References

  • Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Mining Text Data, pp. 77–128. Springer, New York (2012)

    Google Scholar 

  • Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media, Inc. (2009)

    Google Scholar 

  • Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Recommender Systems Handbook, pp. 367–386. Springer (2011)

    Google Scholar 

  • Cohen, E.: Toward a sociology of international tourism. Soc. Res. 39(1), 164–182 (1972)

    Google Scholar 

  • Cosh, K.: Text mining Wikipedia to discover alternative destinations. In: The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 43–48 (2013)

    Google Scholar 

  • Gibson, H., Yiannakis, A.: Tourist roles: needs and the lifecourse. Ann. Tourism Res. 29(2), 358–383 (2002)

    CrossRef  Google Scholar 

  • Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48(1), 26–34 (1999)

    CrossRef  Google Scholar 

  • Gupta, G.K.: Introduction to Data Mining with Case Studies. Prentice-Hall of India Pvt. Ltd. (2006)

    Google Scholar 

  • Hippner, H., Rentzmann, R.: Text mining. Informatik-Spektrum 29(4), 287–290 (2006)

    CrossRef  Google Scholar 

  • Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. Working Papers of Department of Linguistics and Phonetics, Lund University 53, 61–79 (2008)

    Google Scholar 

  • Lahlou, F.Z., Mountassir, A., Benbrahim, H., Kassou, I.: A text classification based method for context extraction from online reviews. In: 8th International Conference on Intelligent Systems: Theories and Applications (SITA) (2013)

    Google Scholar 

  • Leskovec, J., Rajaraman, A., Ullman J.: Mining of Massive Datasets, 2nd edn. Cambridge University Press (2014)

    Google Scholar 

  • Neidhardt, J., Werthner, H.: Travellers and their joint characteristics within the seven-factor model. In: Information and Communication Technologies in Tourism 2017, pp. 503–515. Springer (2017)

    Google Scholar 

  • Neidhardt, J., Schuster, R., Seyfang, L., Werthner, H.: Eliciting the users’ unknown preferences. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 309–312. ACM (2014)

    Google Scholar 

  • Neidhardt, J., Seyfang, L., Schuster, R., Werthner, H.: A picture-based approach to recommender systems. Inf. Technol. Tourism 15(1), 49–69 (2015)

    CrossRef  Google Scholar 

  • Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Recommender Systems Handbook, pp. 1–35. Springer (2011)

    Google Scholar 

  • Schmunk, S., Höpken, W., Fuchs, M., Lexhagen, M.: Sentiment analysis: extracting decision-relevant knowledge from UGC. Inf. Commun. Technol. Tourism 14(1), 253–265 (2014)

    Google Scholar 

  • Weiss, S.M., Indurkhya, N., Zhang, T.: Fundamentals of Predictive Text Mining. Springer, London (2010)

    CrossRef  Google Scholar 

  • Werthner, H., Klein, S.: Information Technology and Tourism—A Challenging Relationship. Springer, Wien, New York (1999)

    CrossRef  Google Scholar 

  • Xiang, Z., Du, Q., Ma, Y., Fan, W.: Assessing reliability of social media data: lessons from mining TripAdvisor hotel reviews. Inf. Commun. Technol. Tourism 17(1), 625–637 (2017)

    Google Scholar 

  • Yiannakis, A., Gibson, H.: Roles tourists play. Ann. Tourism Res. 19(2), 287–303 (1992)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Glatzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Glatzer, L., Neidhardt, J., Werthner, H. (2018). Automated Assignment of Hotel Descriptions to Travel Behavioural Patterns. In: Stangl, B., Pesonen, J. (eds) Information and Communication Technologies in Tourism 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-72923-7_31

Download citation