Search Engine Traffic as Input for Predicting Tourist Arrivals

  • Wolfram HöpkenEmail author
  • Tobias Eberle
  • Matthias Fuchs
  • Maria Lexhagen
Conference paper


Due to the perishable nature of tourism services and the limited capacity of tourism firms in serving customers, accurate forecasts of tourism demand are of utmost relevance for the success of tourism businesses. Nowadays, travellers extensively search the web to form expectations and to base their travel decision before visiting a destination. This study presents a novel approach that extends autoregressive forecasting models by considering travellers’ web search behaviour as additional input for predicting tourist arrivals. More precisely, the study presents a method with the capacity to identify relevant search terms and time lags (i.e. time difference between web search activities and corresponding tourist arrivals), and to aggregate these time series into an overall web search index with maximal effect on tourism arrivals. The study is conducted at the leading Swedish mountain destination, Åre, using arrival data and Google web search data for the period 2005–2012. Findings demonstrate the ability of the proposed approach to outperform traditional autoregressive approaches, thus, to increase the predictive power in forecasting tourism demand.


Tourist arrival prediction Web search traffic Google trends data Data mining 


  1. Baddeley, M.C., Barrowclough, D.: Running Regressions—A Practical Guide to Quantitative Research in Economics, Finance and Development Studies. University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. Bangwayo-Skeete, P.F., Skeete, R.W.: Can Google data improve the forecasting performance of tourist arrivals? A mixed-data sampling approach. Tour. Manag. 46, 454–464 (2015)CrossRefGoogle Scholar
  3. Carrière-Swallow, Y., Labbé, F.: Nowcasting with Google Trends in an emerging market. J. Forecast. 32(4), 289–298 (2013)CrossRefGoogle Scholar
  4. Fesenmaier, D.R., Xiang, Z., Pan, B., Law, R.: An analysis of search engine use for travel planning. In: Gretzel, U., Law, R., Fuchs, M. (eds.) Information and Communication Technologies in Tourism, pp. 381–392. Springer, New York (2010)Google Scholar
  5. Fitzsimmons, J.A., Fitzsimmons, M.J.: Service Management—Operations, Strategy & Technology, 3rd edn. McGraw Hill, New York (2001)Google Scholar
  6. Frechtling, D.C.: Forecasting Tourism Demand. Butherworth-Heinemann, Oxford (2002)Google Scholar
  7. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)CrossRefGoogle Scholar
  8. Hand, C., Guy, J.: Searching for the picture: forecasting UK cinema admissions using Google Trends data. Appl. Econ. Lett. 19(11), 1051–1055 (2012)CrossRefGoogle Scholar
  9. Hill, R.C., Griffith, W.E., Lim, G.C.: Principles of Econometrics, 4th edn. Wiley, New York (2011)Google Scholar
  10. Höpken, W., Ernesti, D., Fuchs, M., Kronenberg, K., Lexhagen, M.: Big data as input for predicting tourist arrivals. In: Information and Communication Technologies in Tourism 2017, pp. 187–200. Springer, New York (2017)Google Scholar
  11. Kim, S., Kim, A.: A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 32(3), 669–679 (2016)CrossRefGoogle Scholar
  12. Kristoufek, L.: Measuring correlations between non-stationary series with DCCA coefficient. Phys. A 402, 291–298 (2014)CrossRefGoogle Scholar
  13. Kronenberg, K., Fuchs, M., Salman, K., Lexhagen, M., Höpken, W.: Economic effects of advertising expenditures—a Swedish destination study of international tourists. Scand. J. Hosp. Tour. Res. 16(4), 352–374 (2016)CrossRefGoogle Scholar
  14. Liu, B.: Web Data Mining—Exploring Hyperlinks, Contents, and Usage Data. Springer, Heidelberg (2008)Google Scholar
  15. Liu, Y., Lv, B., Peng, G., Yuan, Q.: A pre-processing method of internet search data for prediction improvement. In: Proceedings of the Data Mining and Intelligent Knowledge Management Workshop, pp. 3:1–3:7. ACM, New York (2012)Google Scholar
  16. Menner, T., Höpken, W., Fuchs, M., Lexhagen, M.: Topic detection—identifying relevant topics in tourism reviews. In: Inversini, A., Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016, pp. 411–423. Springer, New York (2016)Google Scholar
  17. Mukherjee, C., White, H., Wuyts, M.: Econometrics and Data Analysis for Developing Countries. Routledge, New York (1998)Google Scholar
  18. Önder, I., Gunter, U.: Forecasting tourism demand with Google trends for a major European city destination. Tour. Anal. 21, 203–220 (2016)CrossRefGoogle Scholar
  19. Pan, B., Wu, C., Song, H.: Forecasting hotel room demand using search engine data. J. Hosp. Tour. Technol. 3(3), 196–210 (2012)CrossRefGoogle Scholar
  20. Pan, B., Li, X., Law, R., Huang, X.: Forecasting tourism demand with composite search index. Tour. Manag. 59(1), 57–66 (2017)Google Scholar
  21. Pearson CMG: Internet and Search Engine Use By Country: Global Search Engine Marketing. (2017)
  22. Peng, G., Liu, Y., Wang, J., Gu, J.: Analysis of the prediction capability of web search data based on the HE-TDC method—prediction of the volume of daily tourism visitors. J. Syst. Sci. Syst. Eng. 26(2), 163–182 (2017)CrossRefGoogle Scholar
  23. Podobnik, B., Jiang, Z.-Q., Zhou, W., Stanley, H.E.: Statistical tests for power-law cross-correlated processes. Phys. Rev. E 84(066118), 1–8 (2011)Google Scholar
  24. Song, H., Li, G., Witt, S.F., Fei, B.: Tourism demand modelling and forecasting: how should demand be measured? Tour. Econ. 16(1), 63–81 (2010)Google Scholar
  25. Varian, H.: Big data: new tricks for econometrics. J. Econ. Perspect. 28(2), 3–28 (2014)CrossRefGoogle Scholar
  26. Vosen, S., Schmidt, T.: Forecasting private consumption: survey-based indicators vs. Google trends. J. Forecast. 30(6), 565–578 (2011)CrossRefGoogle Scholar
  27. WTTC: Travel & Tourism: Economic Impact 2016—World. World Travel & Tourism Council, London (2016)Google Scholar
  28. Xiaoxuan, L., Qi, W., Geng, P., Benfu, L.: Tourism forecasting by search engine data with noise-processing. Afr. J. Bus. Manag. 10(6), 114–130 (2016)CrossRefGoogle Scholar
  29. Yang, X., Pan, B., Evans, J.A., Lv, B.: Forecasting Chinese tourist volumes with search engine data. Tour. Manag. 46(3), 386–397 (2015)CrossRefGoogle Scholar
  30. Zebende, G.: DCCA cross-correlation coefficient: quantifying level of cross-correlation. Phys. A 390, 614–618 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Wolfram Höpken
    • 1
    Email author
  • Tobias Eberle
    • 1
  • Matthias Fuchs
    • 2
  • Maria Lexhagen
    • 2
  1. 1.University of Applied Sciences Ravensburg-WeingartenWeingartenGermany
  2. 2.The European Tourism Research Institute (ETOUR), Mid-Sweden UniversityÖstersundSweden

Personalised recommendations