Electrical Survey Technique and Mathematical Models

  • Balgaisha Mukanova
  • Igor Modin
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)


This chapter describes equipment, recommendations for field measurements, and mathematical models. We provide an introduction to geophysical and mathematical methods for the resistivity surveying of subsurface media, including the mathematical models commonly used for electromagnetic surveys and analytical solutions for layered media. The material includes a description of resistivity filter coefficients that are computed and used in practice. We formulate statements of direct and inverse problems and outline the methods used to solve inverse problems. To represent the basic ideas of the integral equations method (IEM), we discuss the problem of sounding above an inclined plane.


Electrical arrays ERT method Resistivity filters Direct problems Inverse problems Integral equations IEM 


  1. L. Beilina, M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012)CrossRefGoogle Scholar
  2. A.A. Bobachyev, I.N. Modin, E.V. Pervago, V.A. Shevnin, Mnogoelektrodnyye elektricheskiye zondirovaniya v usloviyakh gorizontal’no-neodnorodnykh sred (Review), Razvedochnaya geofizika, 2, JCS ‘Geoinformmark’, Мoscow, 1996Google Scholar
  3. C.A. Brebbia, J.C.F. Telles, L. Wrobel, Boundary Element Techniques. Theory and Applications in Engineering (Springer, Berlin, 2012)Google Scholar
  4. A.M. Bruaset, A Survey of Preconditioned Iterative Methods. Research Notes in Mathematics Series, 328 (Addison-Wesley, New York, 1995), pp. 63–75Google Scholar
  5. T. Dahlin, The development of DC resistivity imaging techniques. Comput. Geosci. 27, 1019–1029 (2001)CrossRefGoogle Scholar
  6. D.H. Griffiths, R.D. Barker, Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys. 29, 211–226 (1993)CrossRefGoogle Scholar
  7. V.K. Ivanov, O lineynykh nekorrektnykh zadachakh. Doklady USSR Acad. Sci. 145(2), 270–272 (1962)Google Scholar
  8. Von E. Kamke, Partielle Differential Gleichungen Erster Ordnung für Eine Gesuchte Funktion (Leipzig, 1959)Google Scholar
  9. V.K. Khmelevskoi, Electrorazvedka (MSU, Moscow, 1984)Google Scholar
  10. O. Koefoed, Geosounding Principles: Resistivity Sounding Measurements (Elsevier, Amsterdam, 1979)Google Scholar
  11. J.L. Mueller, S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications (SIAM, 2012)Google Scholar
  12. B. Mukanova, Numerical reconstruction of unknown boundary data in the Cauchy problem for Laplace’s equation. Inverse Probl. Sci. Eng. 21(8), 1255–1267 (2013a)CrossRefGoogle Scholar
  13. B. Mukanova, A numerical solution to the well resistivity-sounding problem in the axisymmetric case. Inverse Probl. Sci. Eng. 21(5), 767–780 (2013b)CrossRefGoogle Scholar
  14. B.G. Mukanova, M.K. Orunkhanov, Inverse resistivity problem: geoelectric uncertainty principle and numerical reconstruction method. Math. Comput. Simul. 80, 2091–2108 (2010)CrossRefGoogle Scholar
  15. B. Mukanova, V.G. Romanov, Inverse source problem for wave equation and GPR data interpretation problem. Eurasian J. Math. Comput. Appl. 4(3), 15–28 (2016)Google Scholar
  16. M.K. Orunkhanov, B.G. Mukanova, B.K. Sarbasova, Chislennaya realizacia metoda potencialov v zadache zondirovania nad naklonnym lpatom, in Computational Technologies, vol. 9. (Siberian Branch of Russian Academy of Sciences, Novosibirsk, 2004a), pp. 45–48Google Scholar
  17. M.K. Orunkhanov, B.G. Mukanova, B.K. Sarbasova, Chislennoe modelirovanie zadach electricheskogo zondirovania, in Computational Technologies, Special Issue, part 3, 9 (Almaty-Novosibirsk, 2004b), pp. 259–263Google Scholar
  18. I.P. Skalskaya, Pole tochechnogo istochnika toka, raspolozhennogo na poverkhnosti Zemli nad naklonnym plastom. J. Tech. Phys. 18(10), 1243–1254 (1948)Google Scholar
  19. A.N. Tikhonov, Ob electrozondirovanii nad naklonnym plastom. Trudy Instituta Teoreticheskoi Pisiki 1, 116–136 (1946)Google Scholar
  20. A.N. Tikhonov, Ob edinsvennosti reshenia zadachi electrorazvedki. Doklady USSR Acad. Sci. 69(6), 797–800 (1949.) (in Russian)Google Scholar
  21. A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems (Winston and Sons, Washington, DC, 1977)Google Scholar
  22. Y.V. Yakubovskii, Electrorazvedka (Nedra, Moscow, 1980)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Balgaisha Mukanova
    • 1
  • Igor Modin
    • 2
  1. 1.L.N. Gumilyov Eurasian, National UniversityAstanaKazakhstan
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations